L(s) = 1 | + (0.223 − 0.386i)3-s + (−0.612 − 0.612i)5-s + (2.00 + 0.537i)7-s + (1.40 + 2.42i)9-s + (3.04 − 0.816i)11-s + (−3.45 − 1.02i)13-s + (−0.373 + 0.100i)15-s + (2.68 − 1.55i)17-s + (3.53 + 0.948i)19-s + (0.655 − 0.655i)21-s + (1.56 − 2.70i)23-s − 4.24i·25-s + 2.58·27-s + (6.13 + 3.54i)29-s + (−2.77 − 2.77i)31-s + ⋯ |
L(s) = 1 | + (0.128 − 0.223i)3-s + (−0.274 − 0.274i)5-s + (0.758 + 0.203i)7-s + (0.466 + 0.808i)9-s + (0.918 − 0.246i)11-s + (−0.958 − 0.283i)13-s + (−0.0964 + 0.0258i)15-s + (0.651 − 0.376i)17-s + (0.812 + 0.217i)19-s + (0.143 − 0.143i)21-s + (0.325 − 0.563i)23-s − 0.849i·25-s + 0.497·27-s + (1.13 + 0.657i)29-s + (−0.498 − 0.498i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.972 + 0.231i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.972 + 0.231i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.56515 - 0.183987i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56515 - 0.183987i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (3.45 + 1.02i)T \) |
good | 3 | \( 1 + (-0.223 + 0.386i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.612 + 0.612i)T + 5iT^{2} \) |
| 7 | \( 1 + (-2.00 - 0.537i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-3.04 + 0.816i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.68 + 1.55i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.53 - 0.948i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.56 + 2.70i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-6.13 - 3.54i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.77 + 2.77i)T + 31iT^{2} \) |
| 37 | \( 1 + (0.155 + 0.580i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-1.60 - 5.98i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (5.34 - 3.08i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.19 - 6.19i)T - 47iT^{2} \) |
| 53 | \( 1 - 2.19iT - 53T^{2} \) |
| 59 | \( 1 + (1.67 - 6.25i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.346 + 0.199i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.40 + 8.98i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-4.33 + 16.1i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (6.53 + 6.53i)T + 73iT^{2} \) |
| 79 | \( 1 - 12.9iT - 79T^{2} \) |
| 83 | \( 1 + (9.22 - 9.22i)T - 83iT^{2} \) |
| 89 | \( 1 + (6.08 - 1.62i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (15.1 + 4.07i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.29871843418456045845888548079, −10.26004541864723758229179770849, −9.364110040422578806627685786653, −8.212416966297327009278373164039, −7.68508560775830851141880177520, −6.58519463675182895629420143452, −5.17426342275804927652395076663, −4.48803804198555070520764574759, −2.88470963708672234920547046008, −1.37344641690306194952559351537,
1.45007319665933950138927253952, 3.28192474755651532634963529183, 4.27179277743187263515410008059, 5.34388766243379653224521765932, 6.81080893520165300282656097253, 7.38148179989101068316719898747, 8.564339647665530194706464304380, 9.557248352843997550173033090843, 10.17049612628388713418499636237, 11.47918290541830145841476747090