L(s) = 1 | + 3-s + 5-s − 7-s − 13-s + 15-s − 17-s − 21-s − 27-s + 2·31-s − 35-s + 37-s − 39-s + 43-s − 47-s − 51-s − 65-s − 71-s − 81-s − 85-s + 91-s + 2·93-s − 105-s − 2·107-s + 109-s + 111-s + 2·113-s + 119-s + ⋯ |
L(s) = 1 | + 3-s + 5-s − 7-s − 13-s + 15-s − 17-s − 21-s − 27-s + 2·31-s − 35-s + 37-s − 39-s + 43-s − 47-s − 51-s − 65-s − 71-s − 81-s − 85-s + 91-s + 2·93-s − 105-s − 2·107-s + 109-s + 111-s + 2·113-s + 119-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(416s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
1
|
Analytic conductor: |
0.207611 |
Root analytic conductor: |
0.455643 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ416(207,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.106053865 |
L(21) |
≈ |
1.106053865 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+T |
good | 3 | 1−T+T2 |
| 5 | 1−T+T2 |
| 7 | 1+T+T2 |
| 11 | (1−T)(1+T) |
| 17 | 1+T+T2 |
| 19 | (1−T)(1+T) |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 31 | (1−T)2 |
| 37 | 1−T+T2 |
| 41 | (1−T)(1+T) |
| 43 | 1−T+T2 |
| 47 | 1+T+T2 |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | (1−T)(1+T) |
| 67 | (1−T)(1+T) |
| 71 | 1+T+T2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.42371445012146906223298386792, −10.10071388774337285274400321869, −9.624135009704371750161913168064, −8.889879139031364702347720607118, −7.86411890344124420829049809431, −6.69492788052190547853235166609, −5.88206968753216184950267243811, −4.48916427945045909880908525906, −3.01462645230284483610556303432, −2.26480681637905692621118531044,
2.26480681637905692621118531044, 3.01462645230284483610556303432, 4.48916427945045909880908525906, 5.88206968753216184950267243811, 6.69492788052190547853235166609, 7.86411890344124420829049809431, 8.889879139031364702347720607118, 9.624135009704371750161913168064, 10.10071388774337285274400321869, 11.42371445012146906223298386792