L(s) = 1 | + 3-s + 5-s − 7-s − 13-s + 15-s − 17-s − 21-s − 27-s + 2·31-s − 35-s + 37-s − 39-s + 43-s − 47-s − 51-s − 65-s − 71-s − 81-s − 85-s + 91-s + 2·93-s − 105-s − 2·107-s + 109-s + 111-s + 2·113-s + 119-s + ⋯ |
L(s) = 1 | + 3-s + 5-s − 7-s − 13-s + 15-s − 17-s − 21-s − 27-s + 2·31-s − 35-s + 37-s − 39-s + 43-s − 47-s − 51-s − 65-s − 71-s − 81-s − 85-s + 91-s + 2·93-s − 105-s − 2·107-s + 109-s + 111-s + 2·113-s + 119-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.106053865\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.106053865\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 - T + T^{2} \) |
| 5 | \( 1 - T + T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42371445012146906223298386792, −10.10071388774337285274400321869, −9.624135009704371750161913168064, −8.889879139031364702347720607118, −7.86411890344124420829049809431, −6.69492788052190547853235166609, −5.88206968753216184950267243811, −4.48916427945045909880908525906, −3.01462645230284483610556303432, −2.26480681637905692621118531044,
2.26480681637905692621118531044, 3.01462645230284483610556303432, 4.48916427945045909880908525906, 5.88206968753216184950267243811, 6.69492788052190547853235166609, 7.86411890344124420829049809431, 8.889879139031364702347720607118, 9.624135009704371750161913168064, 10.10071388774337285274400321869, 11.42371445012146906223298386792