L(s) = 1 | + 50·3-s − 218·5-s + 614·7-s + 1.77e3·9-s − 2.19e3·13-s − 1.09e4·15-s + 3.17e3·17-s + 3.07e4·21-s + 3.18e4·25-s + 5.21e4·27-s + 2.78e4·31-s − 1.33e5·35-s + 1.38e4·37-s − 1.09e5·39-s + 1.11e5·43-s − 3.86e5·45-s − 1.28e5·47-s + 2.59e5·49-s + 1.58e5·51-s + 1.08e6·63-s + 4.78e5·65-s + 3.17e5·71-s + 1.59e6·75-s + 1.31e6·81-s − 6.91e5·85-s − 1.34e6·91-s + 1.39e6·93-s + ⋯ |
L(s) = 1 | + 1.85·3-s − 1.74·5-s + 1.79·7-s + 2.42·9-s − 13-s − 3.22·15-s + 0.645·17-s + 3.31·21-s + 2.04·25-s + 2.64·27-s + 0.934·31-s − 3.12·35-s + 0.274·37-s − 1.85·39-s + 1.40·43-s − 4.23·45-s − 1.23·47-s + 2.20·49-s + 1.19·51-s + 4.34·63-s + 1.74·65-s + 0.888·71-s + 3.78·75-s + 2.47·81-s − 1.12·85-s − 1.79·91-s + 1.72·93-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)Λ(7−s)
Λ(s)=(=(416s/2ΓC(s+3)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
1
|
Analytic conductor: |
95.7024 |
Root analytic conductor: |
9.78276 |
Motivic weight: |
6 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ416(207,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :3), 1)
|
Particular Values
L(27) |
≈ |
4.290645238 |
L(21) |
≈ |
4.290645238 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+p3T |
good | 3 | 1−50T+p6T2 |
| 5 | 1+218T+p6T2 |
| 7 | 1−614T+p6T2 |
| 11 | (1−p3T)(1+p3T) |
| 17 | 1−3170T+p6T2 |
| 19 | (1−p3T)(1+p3T) |
| 23 | (1−p3T)(1+p3T) |
| 29 | (1−p3T)(1+p3T) |
| 31 | 1−27830T+p6T2 |
| 37 | 1−13894T+p6T2 |
| 41 | (1−p3T)(1+p3T) |
| 43 | 1−111490T+p6T2 |
| 47 | 1+128554T+p6T2 |
| 53 | (1−p3T)(1+p3T) |
| 59 | (1−p3T)(1+p3T) |
| 61 | (1−p3T)(1+p3T) |
| 67 | (1−p3T)(1+p3T) |
| 71 | 1−317990T+p6T2 |
| 73 | (1−p3T)(1+p3T) |
| 79 | (1−p3T)(1+p3T) |
| 83 | (1−p3T)(1+p3T) |
| 89 | (1−p3T)(1+p3T) |
| 97 | (1−p3T)(1+p3T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09555616764959933928864337360, −8.929785115982116395420764856246, −8.141887735203654408895953678611, −7.79779067574422377097957391923, −7.19746986405138588844385494713, −4.82768396846223968724242945694, −4.25792522684558799032857330418, −3.25697536663107794959482148636, −2.20136466490286399083650286051, −0.971924218133457298629039723403,
0.971924218133457298629039723403, 2.20136466490286399083650286051, 3.25697536663107794959482148636, 4.25792522684558799032857330418, 4.82768396846223968724242945694, 7.19746986405138588844385494713, 7.79779067574422377097957391923, 8.141887735203654408895953678611, 8.929785115982116395420764856246, 10.09555616764959933928864337360