L(s) = 1 | + (−1.20 − 2.09i)3-s + 2.82·5-s + (2.20 − 3.82i)7-s + (−1.41 + 2.44i)9-s + (1.62 + 2.80i)11-s + (−1 + 3.46i)13-s + (−3.41 − 5.91i)15-s + (2.91 − 5.04i)17-s + (−0.621 + 1.07i)19-s − 10.6·21-s + (0.621 + 1.07i)23-s + 3.00·25-s − 0.414·27-s + (−4.32 − 7.49i)29-s − 5.65·31-s + ⋯ |
L(s) = 1 | + (−0.696 − 1.20i)3-s + 1.26·5-s + (0.834 − 1.44i)7-s + (−0.471 + 0.816i)9-s + (0.488 + 0.846i)11-s + (−0.277 + 0.960i)13-s + (−0.881 − 1.52i)15-s + (0.706 − 1.22i)17-s + (−0.142 + 0.246i)19-s − 2.32·21-s + (0.129 + 0.224i)23-s + 0.600·25-s − 0.0797·27-s + (−0.803 − 1.39i)29-s − 1.01·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0128 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0128 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.02980 - 1.04309i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.02980 - 1.04309i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1 - 3.46i)T \) |
good | 3 | \( 1 + (1.20 + 2.09i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 2.82T + 5T^{2} \) |
| 7 | \( 1 + (-2.20 + 3.82i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.62 - 2.80i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.91 + 5.04i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.621 - 1.07i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.621 - 1.07i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.32 + 7.49i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 5.65T + 31T^{2} \) |
| 37 | \( 1 + (-3.74 - 6.48i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.91 - 5.04i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.03 + 3.52i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 + 2.82T + 53T^{2} \) |
| 59 | \( 1 + (0.621 - 1.07i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 - 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.62 - 11.4i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.62 - 6.27i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 12.4T + 73T^{2} \) |
| 79 | \( 1 - 6T + 79T^{2} \) |
| 83 | \( 1 + 4T + 83T^{2} \) |
| 89 | \( 1 + (-1.67 - 2.89i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.5 + 7.79i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26798591332908878027275914545, −9.982773885650309154830260711176, −9.469362538130094024332255790413, −7.76604895823585456810387293220, −7.17435001523400540384268839752, −6.43386664599844950863617194973, −5.35031050011928999273122749769, −4.25630128671750165758581541419, −2.04460082587664742649847813553, −1.18902363818117412411488506714,
1.92858244175304535860187854915, 3.46648177626219165005588939596, 5.03758832816359361039200034102, 5.60551626322680876268635154308, 6.10644366400052375453825882071, 8.020247026217916835361788042620, 9.072847346152842270701154910279, 9.555544843493088140726443421173, 10.81395966862970178321159221668, 10.95296541841046320678756655771