L(s) = 1 | + (−1.20 − 2.09i)3-s + 2.82·5-s + (2.20 − 3.82i)7-s + (−1.41 + 2.44i)9-s + (1.62 + 2.80i)11-s + (−1 + 3.46i)13-s + (−3.41 − 5.91i)15-s + (2.91 − 5.04i)17-s + (−0.621 + 1.07i)19-s − 10.6·21-s + (0.621 + 1.07i)23-s + 3.00·25-s − 0.414·27-s + (−4.32 − 7.49i)29-s − 5.65·31-s + ⋯ |
L(s) = 1 | + (−0.696 − 1.20i)3-s + 1.26·5-s + (0.834 − 1.44i)7-s + (−0.471 + 0.816i)9-s + (0.488 + 0.846i)11-s + (−0.277 + 0.960i)13-s + (−0.881 − 1.52i)15-s + (0.706 − 1.22i)17-s + (−0.142 + 0.246i)19-s − 2.32·21-s + (0.129 + 0.224i)23-s + 0.600·25-s − 0.0797·27-s + (−0.803 − 1.39i)29-s − 1.01·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.0128+0.999i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.0128+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.0128+0.999i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.0128+0.999i)
|
Particular Values
L(1) |
≈ |
1.02980−1.04309i |
L(21) |
≈ |
1.02980−1.04309i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(1−3.46i)T |
good | 3 | 1+(1.20+2.09i)T+(−1.5+2.59i)T2 |
| 5 | 1−2.82T+5T2 |
| 7 | 1+(−2.20+3.82i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1.62−2.80i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−2.91+5.04i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.621−1.07i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.621−1.07i)T+(−11.5+19.9i)T2 |
| 29 | 1+(4.32+7.49i)T+(−14.5+25.1i)T2 |
| 31 | 1+5.65T+31T2 |
| 37 | 1+(−3.74−6.48i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−2.91−5.04i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.03+3.52i)T+(−21.5−37.2i)T2 |
| 47 | 1+6T+47T2 |
| 53 | 1+2.82T+53T2 |
| 59 | 1+(0.621−1.07i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3.5−6.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.62−11.4i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3.62−6.27i)T+(−35.5−61.4i)T2 |
| 73 | 1−12.4T+73T2 |
| 79 | 1−6T+79T2 |
| 83 | 1+4T+83T2 |
| 89 | 1+(−1.67−2.89i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−4.5+7.79i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.26798591332908878027275914545, −9.982773885650309154830260711176, −9.469362538130094024332255790413, −7.76604895823585456810387293220, −7.17435001523400540384268839752, −6.43386664599844950863617194973, −5.35031050011928999273122749769, −4.25630128671750165758581541419, −2.04460082587664742649847813553, −1.18902363818117412411488506714,
1.92858244175304535860187854915, 3.46648177626219165005588939596, 5.03758832816359361039200034102, 5.60551626322680876268635154308, 6.10644366400052375453825882071, 8.020247026217916835361788042620, 9.072847346152842270701154910279, 9.555544843493088140726443421173, 10.81395966862970178321159221668, 10.95296541841046320678756655771