L(s) = 1 | + (−0.988 − 1.01i)2-s + (0.708 + 1.71i)3-s + (−0.0474 + 1.99i)4-s + (0.188 − 0.454i)5-s + (1.03 − 2.40i)6-s + (0.461 − 0.461i)7-s + (2.06 − 1.92i)8-s + (−0.301 + 0.301i)9-s + (−0.645 + 0.258i)10-s + (1.38 + 0.572i)11-s + (−3.45 + 1.33i)12-s + (2.41 − 2.67i)13-s + (−0.923 − 0.0109i)14-s + 0.910·15-s + (−3.99 − 0.189i)16-s + 1.70i·17-s + ⋯ |
L(s) = 1 | + (−0.698 − 0.715i)2-s + (0.408 + 0.987i)3-s + (−0.0237 + 0.999i)4-s + (0.0842 − 0.203i)5-s + (0.420 − 0.982i)6-s + (0.174 − 0.174i)7-s + (0.731 − 0.681i)8-s + (−0.100 + 0.100i)9-s + (−0.204 + 0.0817i)10-s + (0.416 + 0.172i)11-s + (−0.996 + 0.385i)12-s + (0.670 − 0.741i)13-s + (−0.246 − 0.00292i)14-s + 0.235·15-s + (−0.998 − 0.0474i)16-s + 0.413i·17-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.982−0.186i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.982−0.186i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.982−0.186i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(389,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.982−0.186i)
|
Particular Values
L(1) |
≈ |
1.22214+0.114886i |
L(21) |
≈ |
1.22214+0.114886i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.988+1.01i)T |
| 13 | 1+(−2.41+2.67i)T |
good | 3 | 1+(−0.708−1.71i)T+(−2.12+2.12i)T2 |
| 5 | 1+(−0.188+0.454i)T+(−3.53−3.53i)T2 |
| 7 | 1+(−0.461+0.461i)T−7iT2 |
| 11 | 1+(−1.38−0.572i)T+(7.77+7.77i)T2 |
| 17 | 1−1.70iT−17T2 |
| 19 | 1+(−1.71−4.14i)T+(−13.4+13.4i)T2 |
| 23 | 1+(0.296−0.296i)T−23iT2 |
| 29 | 1+(0.673+1.62i)T+(−20.5+20.5i)T2 |
| 31 | 1−5.90iT−31T2 |
| 37 | 1+(1.12−2.70i)T+(−26.1−26.1i)T2 |
| 41 | 1+(6.52+6.52i)T+41iT2 |
| 43 | 1+(0.359−0.867i)T+(−30.4−30.4i)T2 |
| 47 | 1−2.98T+47T2 |
| 53 | 1+(−4.36+10.5i)T+(−37.4−37.4i)T2 |
| 59 | 1+(−3.83+9.25i)T+(−41.7−41.7i)T2 |
| 61 | 1+(3.18+7.69i)T+(−43.1+43.1i)T2 |
| 67 | 1+(3.91−1.61i)T+(47.3−47.3i)T2 |
| 71 | 1+(−3.34+3.34i)T−71iT2 |
| 73 | 1+(7.51+7.51i)T+73iT2 |
| 79 | 1+2.03iT−79T2 |
| 83 | 1+(−0.942−2.27i)T+(−58.6+58.6i)T2 |
| 89 | 1+(8.61−8.61i)T−89iT2 |
| 97 | 1−12.2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.86186295799140824890276793147, −10.31564953504057592368739429077, −9.521851260919626720520068105664, −8.735241869702819604437237956362, −7.993387877146409583040427118531, −6.74534173821553678015793080185, −5.14902960430581636287445597482, −3.91232153343888182658347863929, −3.25760406126560837113114167055, −1.44188101091527142379886141606,
1.21323183950682249797627040483, 2.50758024008050730119770070165, 4.49506712798101561178187196677, 5.85355052047600230891143403635, 6.82958385175513779912473916956, 7.33459095602722421818548040953, 8.470212735133976992246101536012, 8.987658755549027064281887443683, 10.09929704853876231230530183202, 11.15127337385058209273504429190