L(s) = 1 | + (−1.37 + 0.323i)2-s + (−2.65 + 1.10i)3-s + (1.79 − 0.891i)4-s + (−1.41 − 3.42i)5-s + (3.30 − 2.37i)6-s − 0.353i·7-s + (−2.17 + 1.80i)8-s + (3.72 − 3.72i)9-s + (3.05 + 4.25i)10-s + (2.46 − 1.02i)11-s + (−3.77 + 4.33i)12-s + (−3.60 − 0.112i)13-s + (0.114 + 0.487i)14-s + (7.53 + 7.53i)15-s + (2.40 − 3.19i)16-s + 1.59·17-s + ⋯ |
L(s) = 1 | + (−0.973 + 0.229i)2-s + (−1.53 + 0.635i)3-s + (0.895 − 0.445i)4-s + (−0.633 − 1.52i)5-s + (1.34 − 0.969i)6-s − 0.133i·7-s + (−0.769 + 0.638i)8-s + (1.24 − 1.24i)9-s + (0.967 + 1.34i)10-s + (0.743 − 0.307i)11-s + (−1.08 + 1.25i)12-s + (−0.999 − 0.0311i)13-s + (0.0306 + 0.130i)14-s + (1.94 + 1.94i)15-s + (0.602 − 0.798i)16-s + 0.385·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.855 - 0.517i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.855 - 0.517i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0148862 + 0.0533384i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0148862 + 0.0533384i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.37 - 0.323i)T \) |
| 13 | \( 1 + (3.60 + 0.112i)T \) |
good | 3 | \( 1 + (2.65 - 1.10i)T + (2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (1.41 + 3.42i)T + (-3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + 0.353iT - 7T^{2} \) |
| 11 | \( 1 + (-2.46 + 1.02i)T + (7.77 - 7.77i)T^{2} \) |
| 17 | \( 1 - 1.59T + 17T^{2} \) |
| 19 | \( 1 + (1.92 - 4.64i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-2.45 + 2.45i)T - 23iT^{2} \) |
| 29 | \( 1 + (3.11 + 7.53i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (5.89 - 5.89i)T - 31iT^{2} \) |
| 37 | \( 1 + (9.34 - 3.86i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 - 1.57T + 41T^{2} \) |
| 43 | \( 1 + (-0.399 + 0.963i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + (8.53 - 8.53i)T - 47iT^{2} \) |
| 53 | \( 1 + (1.84 - 4.45i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-0.791 - 1.91i)T + (-41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-2.66 - 6.43i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + (-14.2 - 5.91i)T + (47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + 8.29T + 71T^{2} \) |
| 73 | \( 1 - 2.92iT - 73T^{2} \) |
| 79 | \( 1 - 0.975T + 79T^{2} \) |
| 83 | \( 1 + (1.97 - 4.77i)T + (-58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 - 5.86T + 89T^{2} \) |
| 97 | \( 1 + (0.254 + 0.254i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.57668300359699803015314066929, −10.61121305957155961869073524946, −9.795099657756404422798455196159, −8.989200511696063774964607758239, −8.041082991566829909741811066627, −6.91620948302486617255942410639, −5.78343941465127949972838230635, −5.06366826084770747288523065698, −4.00987694166509870636941749860, −1.22930531962712155180094636439,
0.06575726145176157326956976374, 2.03014390782833589874264269198, 3.53805747616077470603188365867, 5.32815495061723543150559491138, 6.67732419428803131758656311176, 6.96757112941024083691609415410, 7.63811056708660540096878567269, 9.206333863619544424360252087366, 10.27720964373777020509495588230, 11.01664006748404554611906070317