L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (−0.866 + 0.5i)11-s + 13-s + (−0.5 + 0.866i)17-s + (0.866 + 0.5i)19-s − 0.999·21-s + (0.866 − 0.5i)23-s − 25-s − i·27-s + (0.5 + 0.866i)29-s + (0.499 − 0.866i)33-s + (−0.5 − 0.866i)37-s + (−0.866 + 0.5i)39-s + (−0.5 − 0.866i)41-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (−0.866 + 0.5i)11-s + 13-s + (−0.5 + 0.866i)17-s + (0.866 + 0.5i)19-s − 0.999·21-s + (0.866 − 0.5i)23-s − 25-s − i·27-s + (0.5 + 0.866i)29-s + (0.499 − 0.866i)33-s + (−0.5 − 0.866i)37-s + (−0.866 + 0.5i)39-s + (−0.5 − 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.494 - 0.869i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.494 - 0.869i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6760501287\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6760501287\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + 2iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 2iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.45407323113429728214257958095, −10.71453289582306159245829494502, −10.12554656228783781527044351141, −8.726316963686132906655453740779, −8.082139972157866462866888207237, −6.78913577969456354190091977661, −5.50067776687963736586586474262, −5.12924886940871015484160370661, −3.80493148432603117085106764238, −2.01481993602685396123698186653,
1.16817482024152375815029543823, 3.09689828821238581465743595102, 4.67881471752009105687629546664, 5.55519337493800148989496338698, 6.53658872710570387340612681246, 7.52366621259775273015933246989, 8.362350221878164128253945514060, 9.525949676586403847380620967776, 10.71647469203674048902874289702, 11.46235892079518807258944203133