L(s) = 1 | + 2.41·2-s + 0.585·3-s + 3.82·4-s + 1.41·6-s + 3.41·7-s + 4.41·8-s − 2.65·9-s − 5.41·11-s + 2.24·12-s − 2.82·13-s + 8.24·14-s + 2.99·16-s + 17-s − 6.41·18-s + 2.82·19-s + 2·21-s − 13.0·22-s + 0.585·23-s + 2.58·24-s − 6.82·26-s − 3.31·27-s + 13.0·28-s + 0.828·29-s − 4.24·31-s − 1.58·32-s − 3.17·33-s + 2.41·34-s + ⋯ |
L(s) = 1 | + 1.70·2-s + 0.338·3-s + 1.91·4-s + 0.577·6-s + 1.29·7-s + 1.56·8-s − 0.885·9-s − 1.63·11-s + 0.647·12-s − 0.784·13-s + 2.20·14-s + 0.749·16-s + 0.242·17-s − 1.51·18-s + 0.648·19-s + 0.436·21-s − 2.78·22-s + 0.122·23-s + 0.527·24-s − 1.33·26-s − 0.637·27-s + 2.47·28-s + 0.153·29-s − 0.762·31-s − 0.280·32-s − 0.552·33-s + 0.414·34-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.742523863 |
L(21) |
≈ |
3.742523863 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1−T |
good | 2 | 1−2.41T+2T2 |
| 3 | 1−0.585T+3T2 |
| 7 | 1−3.41T+7T2 |
| 11 | 1+5.41T+11T2 |
| 13 | 1+2.82T+13T2 |
| 19 | 1−2.82T+19T2 |
| 23 | 1−0.585T+23T2 |
| 29 | 1−0.828T+29T2 |
| 31 | 1+4.24T+31T2 |
| 37 | 1−10.4T+37T2 |
| 41 | 1−10.4T+41T2 |
| 43 | 1−3.65T+43T2 |
| 47 | 1+0.828T+47T2 |
| 53 | 1+11.6T+53T2 |
| 59 | 1+14.8T+59T2 |
| 61 | 1+3.65T+61T2 |
| 67 | 1−8.82T+67T2 |
| 71 | 1−4.24T+71T2 |
| 73 | 1+0.828T+73T2 |
| 79 | 1−2.58T+79T2 |
| 83 | 1−13.3T+83T2 |
| 89 | 1+13.6T+89T2 |
| 97 | 1−7.65T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.23664520772967716513190019753, −10.90577701985937228495745063114, −9.411322287712602102775235249481, −7.931599288782309644467158872189, −7.58492659120522843879784448101, −5.95927652893199961786478029183, −5.21187388188051352096779670999, −4.55161728048305662732947370380, −3.06745154060573483765755880299, −2.28272312873032065049441638696,
2.28272312873032065049441638696, 3.06745154060573483765755880299, 4.55161728048305662732947370380, 5.21187388188051352096779670999, 5.95927652893199961786478029183, 7.58492659120522843879784448101, 7.931599288782309644467158872189, 9.411322287712602102775235249481, 10.90577701985937228495745063114, 11.23664520772967716513190019753