Properties

Label 2-425-1.1-c1-0-19
Degree $2$
Conductor $425$
Sign $1$
Analytic cond. $3.39364$
Root an. cond. $1.84218$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s + 0.585·3-s + 3.82·4-s + 1.41·6-s + 3.41·7-s + 4.41·8-s − 2.65·9-s − 5.41·11-s + 2.24·12-s − 2.82·13-s + 8.24·14-s + 2.99·16-s + 17-s − 6.41·18-s + 2.82·19-s + 2·21-s − 13.0·22-s + 0.585·23-s + 2.58·24-s − 6.82·26-s − 3.31·27-s + 13.0·28-s + 0.828·29-s − 4.24·31-s − 1.58·32-s − 3.17·33-s + 2.41·34-s + ⋯
L(s)  = 1  + 1.70·2-s + 0.338·3-s + 1.91·4-s + 0.577·6-s + 1.29·7-s + 1.56·8-s − 0.885·9-s − 1.63·11-s + 0.647·12-s − 0.784·13-s + 2.20·14-s + 0.749·16-s + 0.242·17-s − 1.51·18-s + 0.648·19-s + 0.436·21-s − 2.78·22-s + 0.122·23-s + 0.527·24-s − 1.33·26-s − 0.637·27-s + 2.47·28-s + 0.153·29-s − 0.762·31-s − 0.280·32-s − 0.552·33-s + 0.414·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(3.39364\)
Root analytic conductor: \(1.84218\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 425,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.742523863\)
\(L(\frac12)\) \(\approx\) \(3.742523863\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 - T \)
good2 \( 1 - 2.41T + 2T^{2} \)
3 \( 1 - 0.585T + 3T^{2} \)
7 \( 1 - 3.41T + 7T^{2} \)
11 \( 1 + 5.41T + 11T^{2} \)
13 \( 1 + 2.82T + 13T^{2} \)
19 \( 1 - 2.82T + 19T^{2} \)
23 \( 1 - 0.585T + 23T^{2} \)
29 \( 1 - 0.828T + 29T^{2} \)
31 \( 1 + 4.24T + 31T^{2} \)
37 \( 1 - 10.4T + 37T^{2} \)
41 \( 1 - 10.4T + 41T^{2} \)
43 \( 1 - 3.65T + 43T^{2} \)
47 \( 1 + 0.828T + 47T^{2} \)
53 \( 1 + 11.6T + 53T^{2} \)
59 \( 1 + 14.8T + 59T^{2} \)
61 \( 1 + 3.65T + 61T^{2} \)
67 \( 1 - 8.82T + 67T^{2} \)
71 \( 1 - 4.24T + 71T^{2} \)
73 \( 1 + 0.828T + 73T^{2} \)
79 \( 1 - 2.58T + 79T^{2} \)
83 \( 1 - 13.3T + 83T^{2} \)
89 \( 1 + 13.6T + 89T^{2} \)
97 \( 1 - 7.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23664520772967716513190019753, −10.90577701985937228495745063114, −9.411322287712602102775235249481, −7.931599288782309644467158872189, −7.58492659120522843879784448101, −5.95927652893199961786478029183, −5.21187388188051352096779670999, −4.55161728048305662732947370380, −3.06745154060573483765755880299, −2.28272312873032065049441638696, 2.28272312873032065049441638696, 3.06745154060573483765755880299, 4.55161728048305662732947370380, 5.21187388188051352096779670999, 5.95927652893199961786478029183, 7.58492659120522843879784448101, 7.931599288782309644467158872189, 9.411322287712602102775235249481, 10.90577701985937228495745063114, 11.23664520772967716513190019753

Graph of the $Z$-function along the critical line