L(s) = 1 | + 2.07i·2-s + (−1.78 − 1.78i)3-s − 2.28·4-s + (3.69 − 3.69i)6-s + (0.260 − 0.260i)7-s − 0.595i·8-s + 3.36i·9-s + (−1.76 + 1.76i)11-s + (4.08 + 4.08i)12-s + 4.68·13-s + (0.540 + 0.540i)14-s − 3.34·16-s + (−3.84 + 1.48i)17-s − 6.97·18-s + 7.16i·19-s + ⋯ |
L(s) = 1 | + 1.46i·2-s + (−1.03 − 1.03i)3-s − 1.14·4-s + (1.50 − 1.50i)6-s + (0.0986 − 0.0986i)7-s − 0.210i·8-s + 1.12i·9-s + (−0.532 + 0.532i)11-s + (1.17 + 1.17i)12-s + 1.30·13-s + (0.144 + 0.144i)14-s − 0.835·16-s + (−0.932 + 0.360i)17-s − 1.64·18-s + 1.64i·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.957−0.289i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.957−0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.957−0.289i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.957−0.289i)
|
Particular Values
L(1) |
≈ |
0.0927958+0.626893i |
L(21) |
≈ |
0.0927958+0.626893i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(3.84−1.48i)T |
good | 2 | 1−2.07iT−2T2 |
| 3 | 1+(1.78+1.78i)T+3iT2 |
| 7 | 1+(−0.260+0.260i)T−7iT2 |
| 11 | 1+(1.76−1.76i)T−11iT2 |
| 13 | 1−4.68T+13T2 |
| 19 | 1−7.16iT−19T2 |
| 23 | 1+(4.73−4.73i)T−23iT2 |
| 29 | 1+(4.79+4.79i)T+29iT2 |
| 31 | 1+(−3.40−3.40i)T+31iT2 |
| 37 | 1+(−1.37−1.37i)T+37iT2 |
| 41 | 1+(−1.66+1.66i)T−41iT2 |
| 43 | 1−11.7iT−43T2 |
| 47 | 1−1.65T+47T2 |
| 53 | 1+6.81iT−53T2 |
| 59 | 1+0.484iT−59T2 |
| 61 | 1+(−4.86+4.86i)T−61iT2 |
| 67 | 1−1.87T+67T2 |
| 71 | 1+(−1.21−1.21i)T+71iT2 |
| 73 | 1+(0.202+0.202i)T+73iT2 |
| 79 | 1+(−3.80+3.80i)T−79iT2 |
| 83 | 1−9.94iT−83T2 |
| 89 | 1+4.30T+89T2 |
| 97 | 1+(9.01+9.01i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59809718327628569063631343246, −10.90858340931274775886810446985, −9.624211600062659587103656690398, −8.184222677648773413021326338861, −7.81689570937550426145412206666, −6.73366644460602954234824735817, −6.07927571486740227209958893553, −5.50578810535654991705719483309, −4.14373628099135465223505056796, −1.72211865247491794086935508072,
0.45878954507378967587357711680, 2.44791485572697754172012076659, 3.79095893092929381277233356797, 4.58804464149939646880023162116, 5.64799129982182478469890799186, 6.76157478397282389371695667056, 8.582855394948275212361298319782, 9.303038830987056504183484595935, 10.34590135733983997542488987920, 10.93719109052559768809169540282