L(s) = 1 | + 2.07i·2-s + (−1.78 − 1.78i)3-s − 2.28·4-s + (3.69 − 3.69i)6-s + (0.260 − 0.260i)7-s − 0.595i·8-s + 3.36i·9-s + (−1.76 + 1.76i)11-s + (4.08 + 4.08i)12-s + 4.68·13-s + (0.540 + 0.540i)14-s − 3.34·16-s + (−3.84 + 1.48i)17-s − 6.97·18-s + 7.16i·19-s + ⋯ |
L(s) = 1 | + 1.46i·2-s + (−1.03 − 1.03i)3-s − 1.14·4-s + (1.50 − 1.50i)6-s + (0.0986 − 0.0986i)7-s − 0.210i·8-s + 1.12i·9-s + (−0.532 + 0.532i)11-s + (1.17 + 1.17i)12-s + 1.30·13-s + (0.144 + 0.144i)14-s − 0.835·16-s + (−0.932 + 0.360i)17-s − 1.64·18-s + 1.64i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0927958 + 0.626893i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0927958 + 0.626893i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (3.84 - 1.48i)T \) |
good | 2 | \( 1 - 2.07iT - 2T^{2} \) |
| 3 | \( 1 + (1.78 + 1.78i)T + 3iT^{2} \) |
| 7 | \( 1 + (-0.260 + 0.260i)T - 7iT^{2} \) |
| 11 | \( 1 + (1.76 - 1.76i)T - 11iT^{2} \) |
| 13 | \( 1 - 4.68T + 13T^{2} \) |
| 19 | \( 1 - 7.16iT - 19T^{2} \) |
| 23 | \( 1 + (4.73 - 4.73i)T - 23iT^{2} \) |
| 29 | \( 1 + (4.79 + 4.79i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3.40 - 3.40i)T + 31iT^{2} \) |
| 37 | \( 1 + (-1.37 - 1.37i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1.66 + 1.66i)T - 41iT^{2} \) |
| 43 | \( 1 - 11.7iT - 43T^{2} \) |
| 47 | \( 1 - 1.65T + 47T^{2} \) |
| 53 | \( 1 + 6.81iT - 53T^{2} \) |
| 59 | \( 1 + 0.484iT - 59T^{2} \) |
| 61 | \( 1 + (-4.86 + 4.86i)T - 61iT^{2} \) |
| 67 | \( 1 - 1.87T + 67T^{2} \) |
| 71 | \( 1 + (-1.21 - 1.21i)T + 71iT^{2} \) |
| 73 | \( 1 + (0.202 + 0.202i)T + 73iT^{2} \) |
| 79 | \( 1 + (-3.80 + 3.80i)T - 79iT^{2} \) |
| 83 | \( 1 - 9.94iT - 83T^{2} \) |
| 89 | \( 1 + 4.30T + 89T^{2} \) |
| 97 | \( 1 + (9.01 + 9.01i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59809718327628569063631343246, −10.90858340931274775886810446985, −9.624211600062659587103656690398, −8.184222677648773413021326338861, −7.81689570937550426145412206666, −6.73366644460602954234824735817, −6.07927571486740227209958893553, −5.50578810535654991705719483309, −4.14373628099135465223505056796, −1.72211865247491794086935508072,
0.45878954507378967587357711680, 2.44791485572697754172012076659, 3.79095893092929381277233356797, 4.58804464149939646880023162116, 5.64799129982182478469890799186, 6.76157478397282389371695667056, 8.582855394948275212361298319782, 9.303038830987056504183484595935, 10.34590135733983997542488987920, 10.93719109052559768809169540282