L(s) = 1 | − 2.24i·2-s + (−0.140 − 0.140i)3-s − 3.05·4-s + (−0.314 + 0.314i)6-s + (1.33 − 1.33i)7-s + 2.37i·8-s − 2.96i·9-s + (2.49 − 2.49i)11-s + (0.428 + 0.428i)12-s − 1.27·13-s + (−3.00 − 3.00i)14-s − 0.766·16-s + (−3.68 + 1.85i)17-s − 6.65·18-s + 4.69i·19-s + ⋯ |
L(s) = 1 | − 1.59i·2-s + (−0.0808 − 0.0808i)3-s − 1.52·4-s + (−0.128 + 0.128i)6-s + (0.505 − 0.505i)7-s + 0.840i·8-s − 0.986i·9-s + (0.752 − 0.752i)11-s + (0.123 + 0.123i)12-s − 0.353·13-s + (−0.804 − 0.804i)14-s − 0.191·16-s + (−0.893 + 0.449i)17-s − 1.56·18-s + 1.07i·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.980−0.195i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.980−0.195i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.980−0.195i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.980−0.195i)
|
Particular Values
L(1) |
≈ |
0.117128+1.18470i |
L(21) |
≈ |
0.117128+1.18470i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(3.68−1.85i)T |
good | 2 | 1+2.24iT−2T2 |
| 3 | 1+(0.140+0.140i)T+3iT2 |
| 7 | 1+(−1.33+1.33i)T−7iT2 |
| 11 | 1+(−2.49+2.49i)T−11iT2 |
| 13 | 1+1.27T+13T2 |
| 19 | 1−4.69iT−19T2 |
| 23 | 1+(−0.406+0.406i)T−23iT2 |
| 29 | 1+(3.81+3.81i)T+29iT2 |
| 31 | 1+(4.39+4.39i)T+31iT2 |
| 37 | 1+(−6.00−6.00i)T+37iT2 |
| 41 | 1+(−4.28+4.28i)T−41iT2 |
| 43 | 1+9.16iT−43T2 |
| 47 | 1−10.7T+47T2 |
| 53 | 1+9.90iT−53T2 |
| 59 | 1+3.15iT−59T2 |
| 61 | 1+(−3.63+3.63i)T−61iT2 |
| 67 | 1+0.281T+67T2 |
| 71 | 1+(−8.30−8.30i)T+71iT2 |
| 73 | 1+(−6.95−6.95i)T+73iT2 |
| 79 | 1+(11.9−11.9i)T−79iT2 |
| 83 | 1−8.51iT−83T2 |
| 89 | 1−16.7T+89T2 |
| 97 | 1+(4.18+4.18i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99438954315923072193109146295, −9.936549197144014218885491980253, −9.232856264128688208229206004480, −8.302559525945363417129076976213, −6.93386910444461926109644220431, −5.78535271433831651990511736649, −4.15041568830681226717066443128, −3.69086205948017133142668399181, −2.13296026176283081126478299432, −0.798235789122958250204344552123,
2.26689207800569984707263466951, 4.47618839874085536885677028207, 5.02002627970418897134385322332, 6.07050324052252353786254843697, 7.18239728740339391756197923784, 7.63314406195769170991243916296, 8.908156428993966611439783299321, 9.270733340205235556274746075159, 10.80371933537512139980493607472, 11.56081921728509270509624029356