L(s) = 1 | − 2.24i·2-s + (−0.140 − 0.140i)3-s − 3.05·4-s + (−0.314 + 0.314i)6-s + (1.33 − 1.33i)7-s + 2.37i·8-s − 2.96i·9-s + (2.49 − 2.49i)11-s + (0.428 + 0.428i)12-s − 1.27·13-s + (−3.00 − 3.00i)14-s − 0.766·16-s + (−3.68 + 1.85i)17-s − 6.65·18-s + 4.69i·19-s + ⋯ |
L(s) = 1 | − 1.59i·2-s + (−0.0808 − 0.0808i)3-s − 1.52·4-s + (−0.128 + 0.128i)6-s + (0.505 − 0.505i)7-s + 0.840i·8-s − 0.986i·9-s + (0.752 − 0.752i)11-s + (0.123 + 0.123i)12-s − 0.353·13-s + (−0.804 − 0.804i)14-s − 0.191·16-s + (−0.893 + 0.449i)17-s − 1.56·18-s + 1.07i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 - 0.195i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.117128 + 1.18470i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.117128 + 1.18470i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (3.68 - 1.85i)T \) |
good | 2 | \( 1 + 2.24iT - 2T^{2} \) |
| 3 | \( 1 + (0.140 + 0.140i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1.33 + 1.33i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.49 + 2.49i)T - 11iT^{2} \) |
| 13 | \( 1 + 1.27T + 13T^{2} \) |
| 19 | \( 1 - 4.69iT - 19T^{2} \) |
| 23 | \( 1 + (-0.406 + 0.406i)T - 23iT^{2} \) |
| 29 | \( 1 + (3.81 + 3.81i)T + 29iT^{2} \) |
| 31 | \( 1 + (4.39 + 4.39i)T + 31iT^{2} \) |
| 37 | \( 1 + (-6.00 - 6.00i)T + 37iT^{2} \) |
| 41 | \( 1 + (-4.28 + 4.28i)T - 41iT^{2} \) |
| 43 | \( 1 + 9.16iT - 43T^{2} \) |
| 47 | \( 1 - 10.7T + 47T^{2} \) |
| 53 | \( 1 + 9.90iT - 53T^{2} \) |
| 59 | \( 1 + 3.15iT - 59T^{2} \) |
| 61 | \( 1 + (-3.63 + 3.63i)T - 61iT^{2} \) |
| 67 | \( 1 + 0.281T + 67T^{2} \) |
| 71 | \( 1 + (-8.30 - 8.30i)T + 71iT^{2} \) |
| 73 | \( 1 + (-6.95 - 6.95i)T + 73iT^{2} \) |
| 79 | \( 1 + (11.9 - 11.9i)T - 79iT^{2} \) |
| 83 | \( 1 - 8.51iT - 83T^{2} \) |
| 89 | \( 1 - 16.7T + 89T^{2} \) |
| 97 | \( 1 + (4.18 + 4.18i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99438954315923072193109146295, −9.936549197144014218885491980253, −9.232856264128688208229206004480, −8.302559525945363417129076976213, −6.93386910444461926109644220431, −5.78535271433831651990511736649, −4.15041568830681226717066443128, −3.69086205948017133142668399181, −2.13296026176283081126478299432, −0.798235789122958250204344552123,
2.26689207800569984707263466951, 4.47618839874085536885677028207, 5.02002627970418897134385322332, 6.07050324052252353786254843697, 7.18239728740339391756197923784, 7.63314406195769170991243916296, 8.908156428993966611439783299321, 9.270733340205235556274746075159, 10.80371933537512139980493607472, 11.56081921728509270509624029356