L(s) = 1 | + 1.21i·2-s + (−2.23 − 2.23i)3-s + 0.520·4-s + (2.72 − 2.72i)6-s + (−0.679 + 0.679i)7-s + 3.06i·8-s + 7.02i·9-s + (2.22 − 2.22i)11-s + (−1.16 − 1.16i)12-s + 2.02·13-s + (−0.827 − 0.827i)14-s − 2.68·16-s + (3.56 − 2.07i)17-s − 8.54·18-s − 5.28i·19-s + ⋯ |
L(s) = 1 | + 0.860i·2-s + (−1.29 − 1.29i)3-s + 0.260·4-s + (1.11 − 1.11i)6-s + (−0.256 + 0.256i)7-s + 1.08i·8-s + 2.34i·9-s + (0.669 − 0.669i)11-s + (−0.336 − 0.336i)12-s + 0.561·13-s + (−0.221 − 0.221i)14-s − 0.672·16-s + (0.864 − 0.503i)17-s − 2.01·18-s − 1.21i·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.990+0.135i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.990+0.135i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.990+0.135i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.990+0.135i)
|
Particular Values
L(1) |
≈ |
1.07651−0.0732076i |
L(21) |
≈ |
1.07651−0.0732076i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−3.56+2.07i)T |
good | 2 | 1−1.21iT−2T2 |
| 3 | 1+(2.23+2.23i)T+3iT2 |
| 7 | 1+(0.679−0.679i)T−7iT2 |
| 11 | 1+(−2.22+2.22i)T−11iT2 |
| 13 | 1−2.02T+13T2 |
| 19 | 1+5.28iT−19T2 |
| 23 | 1+(−6.01+6.01i)T−23iT2 |
| 29 | 1+(0.857+0.857i)T+29iT2 |
| 31 | 1+(−3.97−3.97i)T+31iT2 |
| 37 | 1+(5.84+5.84i)T+37iT2 |
| 41 | 1+(1.04−1.04i)T−41iT2 |
| 43 | 1−7.01iT−43T2 |
| 47 | 1−10.9T+47T2 |
| 53 | 1−5.24iT−53T2 |
| 59 | 1+13.8iT−59T2 |
| 61 | 1+(−2.70+2.70i)T−61iT2 |
| 67 | 1+2.37T+67T2 |
| 71 | 1+(−2.82−2.82i)T+71iT2 |
| 73 | 1+(−5.51−5.51i)T+73iT2 |
| 79 | 1+(4.74−4.74i)T−79iT2 |
| 83 | 1−0.171iT−83T2 |
| 89 | 1−1.32T+89T2 |
| 97 | 1+(−1.33−1.33i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20399256800255559715818917298, −10.77983796413381865192743287770, −9.005557921134201525655435353569, −8.056261613932580050007359937410, −7.01362444847559464363508618839, −6.59137506060587188829929547755, −5.78691250873476577143970032453, −4.96870358908261533122289882877, −2.69414271355665950304829884478, −1.00925039481378464120429857240,
1.26845639353507547550243170261, 3.48875523758687329252596456282, 4.01334156760164855632224732294, 5.36932314305888699493232925893, 6.25334180643449513207911414467, 7.22567147569096910972477972342, 9.010522691618971728277369899766, 10.00398028635560156580430433217, 10.26724863549099490425396247254, 11.14626798210802396872530386710