L(s) = 1 | + (−1.82 − 1.82i)2-s + (2.84 − 1.17i)3-s + 4.67i·4-s + (−7.35 − 3.04i)6-s + (1.07 − 2.60i)7-s + (4.89 − 4.89i)8-s + (4.59 − 4.59i)9-s + (0.616 + 0.255i)11-s + (5.51 + 13.3i)12-s + 4.34i·13-s + (−6.72 + 2.78i)14-s − 8.52·16-s + (2.64 − 3.16i)17-s − 16.7·18-s + (1.88 + 1.88i)19-s + ⋯ |
L(s) = 1 | + (−1.29 − 1.29i)2-s + (1.64 − 0.680i)3-s + 2.33i·4-s + (−3.00 − 1.24i)6-s + (0.407 − 0.983i)7-s + (1.72 − 1.72i)8-s + (1.53 − 1.53i)9-s + (0.185 + 0.0769i)11-s + (1.59 + 3.84i)12-s + 1.20i·13-s + (−1.79 + 0.744i)14-s − 2.13·16-s + (0.640 − 0.767i)17-s − 3.95·18-s + (0.433 + 0.433i)19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(−0.675+0.737i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(−0.675+0.737i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
−0.675+0.737i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(376,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), −0.675+0.737i)
|
Particular Values
L(1) |
≈ |
0.528654−1.20145i |
L(21) |
≈ |
0.528654−1.20145i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−2.64+3.16i)T |
good | 2 | 1+(1.82+1.82i)T+2iT2 |
| 3 | 1+(−2.84+1.17i)T+(2.12−2.12i)T2 |
| 7 | 1+(−1.07+2.60i)T+(−4.94−4.94i)T2 |
| 11 | 1+(−0.616−0.255i)T+(7.77+7.77i)T2 |
| 13 | 1−4.34iT−13T2 |
| 19 | 1+(−1.88−1.88i)T+19iT2 |
| 23 | 1+(2.78+1.15i)T+(16.2+16.2i)T2 |
| 29 | 1+(1.50+3.63i)T+(−20.5+20.5i)T2 |
| 31 | 1+(6.05−2.50i)T+(21.9−21.9i)T2 |
| 37 | 1+(2.82−1.16i)T+(26.1−26.1i)T2 |
| 41 | 1+(2.38−5.76i)T+(−28.9−28.9i)T2 |
| 43 | 1+(−4.37+4.37i)T−43iT2 |
| 47 | 1+1.08iT−47T2 |
| 53 | 1+(4.94+4.94i)T+53iT2 |
| 59 | 1+(0.272−0.272i)T−59iT2 |
| 61 | 1+(4.24−10.2i)T+(−43.1−43.1i)T2 |
| 67 | 1+12.0T+67T2 |
| 71 | 1+(−4.19+1.73i)T+(50.2−50.2i)T2 |
| 73 | 1+(−3.08−7.43i)T+(−51.6+51.6i)T2 |
| 79 | 1+(−6.31−2.61i)T+(55.8+55.8i)T2 |
| 83 | 1+(−10.1−10.1i)T+83iT2 |
| 89 | 1+0.844iT−89T2 |
| 97 | 1+(−4.46−10.7i)T+(−68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62966853671169717802831385838, −9.668702122519307586690927687184, −9.205484833912586819301868855535, −8.260832402779264327490635857877, −7.59081766173963385650954927334, −6.97042946762103618964944383065, −4.15014978202593474947189452783, −3.34797909526048758706682886503, −2.13543984578405140712748433605, −1.24989077912236684490144122160,
1.87355188280708928900499971725, 3.37574913659667487736230622975, 5.06393877440666424331129085796, 5.95762309619458057423200703943, 7.55914332236753176383529720557, 7.912799199672709807933022699425, 8.836914821775752174432864865199, 9.203216738726132978379532524091, 10.11448339685003879497124021618, 10.84533484855384456090740744846