L(s) = 1 | + i·2-s + 4-s − 4i·7-s + 3i·8-s + 3·9-s − 2i·13-s + 4·14-s − 16-s − i·17-s + 3i·18-s + 4·19-s + 4i·23-s + 2·26-s − 4i·28-s − 6·29-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.5·4-s − 1.51i·7-s + 1.06i·8-s + 9-s − 0.554i·13-s + 1.06·14-s − 0.250·16-s − 0.242i·17-s + 0.707i·18-s + 0.917·19-s + 0.834i·23-s + 0.392·26-s − 0.755i·28-s − 1.11·29-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.894−0.447i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(324,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.69010+0.398979i |
L(21) |
≈ |
1.69010+0.398979i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+iT |
good | 2 | 1−iT−2T2 |
| 3 | 1−3T2 |
| 7 | 1+4iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1+2iT−13T2 |
| 19 | 1−4T+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−12T+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1+4iT−67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+12T+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.12545955184019786026691703065, −10.34419994153612588694837079470, −9.580103581843853268273104393610, −8.054755129932527360045391104644, −7.37323907538424822017392644714, −6.88283093269140417083303385877, −5.64558969832405997965298070006, −4.50562702493167937967098019859, −3.27421846633199865520241686865, −1.39699613843806692195408059085,
1.66415178220154260649314063962, 2.67920169036367087688039689822, 3.96408590383967063163987482962, 5.34179206358898239150626680022, 6.43689548753242383069829388258, 7.30700044211496192342148109860, 8.571556531784596602191283720981, 9.526145800625271601965973157201, 10.20379975024811324405866717620, 11.30343291001595261223671925186