Properties

Label 2-425-5.4-c1-0-13
Degree $2$
Conductor $425$
Sign $0.894 - 0.447i$
Analytic cond. $3.39364$
Root an. cond. $1.84218$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + 4-s − 4i·7-s + 3i·8-s + 3·9-s − 2i·13-s + 4·14-s − 16-s i·17-s + 3i·18-s + 4·19-s + 4i·23-s + 2·26-s − 4i·28-s − 6·29-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.5·4-s − 1.51i·7-s + 1.06i·8-s + 9-s − 0.554i·13-s + 1.06·14-s − 0.250·16-s − 0.242i·17-s + 0.707i·18-s + 0.917·19-s + 0.834i·23-s + 0.392·26-s − 0.755i·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(3.39364\)
Root analytic conductor: \(1.84218\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{425} (324, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 425,\ (\ :1/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.69010 + 0.398979i\)
\(L(\frac12)\) \(\approx\) \(1.69010 + 0.398979i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 + iT \)
good2 \( 1 - iT - 2T^{2} \)
3 \( 1 - 3T^{2} \)
7 \( 1 + 4iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 4iT - 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 12T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.12545955184019786026691703065, −10.34419994153612588694837079470, −9.580103581843853268273104393610, −8.054755129932527360045391104644, −7.37323907538424822017392644714, −6.88283093269140417083303385877, −5.64558969832405997965298070006, −4.50562702493167937967098019859, −3.27421846633199865520241686865, −1.39699613843806692195408059085, 1.66415178220154260649314063962, 2.67920169036367087688039689822, 3.96408590383967063163987482962, 5.34179206358898239150626680022, 6.43689548753242383069829388258, 7.30700044211496192342148109860, 8.571556531784596602191283720981, 9.526145800625271601965973157201, 10.20379975024811324405866717620, 11.30343291001595261223671925186

Graph of the $Z$-function along the critical line