Properties

Label 2-425-5.4-c1-0-13
Degree 22
Conductor 425425
Sign 0.8940.447i0.894 - 0.447i
Analytic cond. 3.393643.39364
Root an. cond. 1.842181.84218
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + 4-s − 4i·7-s + 3i·8-s + 3·9-s − 2i·13-s + 4·14-s − 16-s i·17-s + 3i·18-s + 4·19-s + 4i·23-s + 2·26-s − 4i·28-s − 6·29-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.5·4-s − 1.51i·7-s + 1.06i·8-s + 9-s − 0.554i·13-s + 1.06·14-s − 0.250·16-s − 0.242i·17-s + 0.707i·18-s + 0.917·19-s + 0.834i·23-s + 0.392·26-s − 0.755i·28-s − 1.11·29-s + ⋯

Functional equation

Λ(s)=(425s/2ΓC(s)L(s)=((0.8940.447i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(425s/2ΓC(s+1/2)L(s)=((0.8940.447i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 425425    =    52175^{2} \cdot 17
Sign: 0.8940.447i0.894 - 0.447i
Analytic conductor: 3.393643.39364
Root analytic conductor: 1.842181.84218
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ425(324,)\chi_{425} (324, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 425, ( :1/2), 0.8940.447i)(2,\ 425,\ (\ :1/2),\ 0.894 - 0.447i)

Particular Values

L(1)L(1) \approx 1.69010+0.398979i1.69010 + 0.398979i
L(12)L(\frac12) \approx 1.69010+0.398979i1.69010 + 0.398979i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
17 1+iT 1 + iT
good2 1iT2T2 1 - iT - 2T^{2}
3 13T2 1 - 3T^{2}
7 1+4iT7T2 1 + 4iT - 7T^{2}
11 1+11T2 1 + 11T^{2}
13 1+2iT13T2 1 + 2iT - 13T^{2}
19 14T+19T2 1 - 4T + 19T^{2}
23 14iT23T2 1 - 4iT - 23T^{2}
29 1+6T+29T2 1 + 6T + 29T^{2}
31 14T+31T2 1 - 4T + 31T^{2}
37 12iT37T2 1 - 2iT - 37T^{2}
41 1+6T+41T2 1 + 6T + 41T^{2}
43 14iT43T2 1 - 4iT - 43T^{2}
47 147T2 1 - 47T^{2}
53 16iT53T2 1 - 6iT - 53T^{2}
59 112T+59T2 1 - 12T + 59T^{2}
61 1+10T+61T2 1 + 10T + 61T^{2}
67 1+4iT67T2 1 + 4iT - 67T^{2}
71 1+4T+71T2 1 + 4T + 71T^{2}
73 1+6iT73T2 1 + 6iT - 73T^{2}
79 1+12T+79T2 1 + 12T + 79T^{2}
83 1+4iT83T2 1 + 4iT - 83T^{2}
89 1+10T+89T2 1 + 10T + 89T^{2}
97 1+2iT97T2 1 + 2iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.12545955184019786026691703065, −10.34419994153612588694837079470, −9.580103581843853268273104393610, −8.054755129932527360045391104644, −7.37323907538424822017392644714, −6.88283093269140417083303385877, −5.64558969832405997965298070006, −4.50562702493167937967098019859, −3.27421846633199865520241686865, −1.39699613843806692195408059085, 1.66415178220154260649314063962, 2.67920169036367087688039689822, 3.96408590383967063163987482962, 5.34179206358898239150626680022, 6.43689548753242383069829388258, 7.30700044211496192342148109860, 8.571556531784596602191283720981, 9.526145800625271601965973157201, 10.20379975024811324405866717620, 11.30343291001595261223671925186

Graph of the ZZ-function along the critical line