L(s) = 1 | − 2-s − 4-s + 2·7-s + 3·8-s + 6·11-s − 2·14-s − 16-s − 6·17-s + 19-s − 6·22-s − 8·23-s − 2·28-s − 4·29-s − 5·32-s + 6·34-s − 4·37-s − 38-s + 2·43-s − 6·44-s + 8·46-s − 8·47-s − 3·49-s + 2·53-s + 6·56-s + 4·58-s − 12·59-s + 2·61-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 0.755·7-s + 1.06·8-s + 1.80·11-s − 0.534·14-s − 1/4·16-s − 1.45·17-s + 0.229·19-s − 1.27·22-s − 1.66·23-s − 0.377·28-s − 0.742·29-s − 0.883·32-s + 1.02·34-s − 0.657·37-s − 0.162·38-s + 0.304·43-s − 0.904·44-s + 1.17·46-s − 1.16·47-s − 3/7·49-s + 0.274·53-s + 0.801·56-s + 0.525·58-s − 1.56·59-s + 0.256·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 + T + p T^{2} \) |
| 7 | \( 1 - 2 T + p T^{2} \) |
| 11 | \( 1 - 6 T + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 4 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 4 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 - 2 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 - 8 T + p T^{2} \) |
| 71 | \( 1 + 16 T + p T^{2} \) |
| 73 | \( 1 + 14 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 - 12 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.154904276278665956764754494175, −7.49006725304513024040398275037, −6.65598056508002457182870521609, −5.94645344090271988207277046134, −4.82592459399091433680554684550, −4.27331149587142879061517048995, −3.60839819994467751886447584009, −1.98429554072259245310201630187, −1.40340994003836782410675250116, 0,
1.40340994003836782410675250116, 1.98429554072259245310201630187, 3.60839819994467751886447584009, 4.27331149587142879061517048995, 4.82592459399091433680554684550, 5.94645344090271988207277046134, 6.65598056508002457182870521609, 7.49006725304513024040398275037, 8.154904276278665956764754494175