L(s) = 1 | − 2-s − 4-s + 2·7-s + 3·8-s + 6·11-s − 2·14-s − 16-s − 6·17-s + 19-s − 6·22-s − 8·23-s − 2·28-s − 4·29-s − 5·32-s + 6·34-s − 4·37-s − 38-s + 2·43-s − 6·44-s + 8·46-s − 8·47-s − 3·49-s + 2·53-s + 6·56-s + 4·58-s − 12·59-s + 2·61-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 0.755·7-s + 1.06·8-s + 1.80·11-s − 0.534·14-s − 1/4·16-s − 1.45·17-s + 0.229·19-s − 1.27·22-s − 1.66·23-s − 0.377·28-s − 0.742·29-s − 0.883·32-s + 1.02·34-s − 0.657·37-s − 0.162·38-s + 0.304·43-s − 0.904·44-s + 1.17·46-s − 1.16·47-s − 3/7·49-s + 0.274·53-s + 0.801·56-s + 0.525·58-s − 1.56·59-s + 0.256·61-s + ⋯ |
Λ(s)=(=(4275s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4275s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 2 | 1+T+pT2 |
| 7 | 1−2T+pT2 |
| 11 | 1−6T+pT2 |
| 13 | 1+pT2 |
| 17 | 1+6T+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+4T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1+16T+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+pT2 |
| 89 | 1+pT2 |
| 97 | 1−12T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.154904276278665956764754494175, −7.49006725304513024040398275037, −6.65598056508002457182870521609, −5.94645344090271988207277046134, −4.82592459399091433680554684550, −4.27331149587142879061517048995, −3.60839819994467751886447584009, −1.98429554072259245310201630187, −1.40340994003836782410675250116, 0,
1.40340994003836782410675250116, 1.98429554072259245310201630187, 3.60839819994467751886447584009, 4.27331149587142879061517048995, 4.82592459399091433680554684550, 5.94645344090271988207277046134, 6.65598056508002457182870521609, 7.49006725304513024040398275037, 8.154904276278665956764754494175