Properties

Label 2-4275-1.1-c1-0-127
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.65·2-s + 0.726·4-s − 0.377·7-s − 2.10·8-s + 1.37·11-s + 2.82·13-s − 0.622·14-s − 4.92·16-s − 6.37·17-s + 19-s + 2.27·22-s − 6.19·23-s + 4.65·26-s − 0.273·28-s + 3.37·29-s + 2.48·31-s − 3.92·32-s − 10.5·34-s + 5.58·37-s + 1.65·38-s − 8.50·41-s − 12.1·43-s + 1.00·44-s − 10.2·46-s + 6.87·47-s − 6.85·49-s + 2.04·52-s + ⋯
L(s)  = 1  + 1.16·2-s + 0.363·4-s − 0.142·7-s − 0.743·8-s + 0.415·11-s + 0.782·13-s − 0.166·14-s − 1.23·16-s − 1.54·17-s + 0.229·19-s + 0.484·22-s − 1.29·23-s + 0.913·26-s − 0.0517·28-s + 0.627·29-s + 0.445·31-s − 0.693·32-s − 1.80·34-s + 0.917·37-s + 0.267·38-s − 1.32·41-s − 1.85·43-s + 0.150·44-s − 1.50·46-s + 1.00·47-s − 0.979·49-s + 0.284·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 1.65T + 2T^{2} \)
7 \( 1 + 0.377T + 7T^{2} \)
11 \( 1 - 1.37T + 11T^{2} \)
13 \( 1 - 2.82T + 13T^{2} \)
17 \( 1 + 6.37T + 17T^{2} \)
23 \( 1 + 6.19T + 23T^{2} \)
29 \( 1 - 3.37T + 29T^{2} \)
31 \( 1 - 2.48T + 31T^{2} \)
37 \( 1 - 5.58T + 37T^{2} \)
41 \( 1 + 8.50T + 41T^{2} \)
43 \( 1 + 12.1T + 43T^{2} \)
47 \( 1 - 6.87T + 47T^{2} \)
53 \( 1 + 11.5T + 53T^{2} \)
59 \( 1 + 6.05T + 59T^{2} \)
61 \( 1 - 5.02T + 61T^{2} \)
67 \( 1 - 3.22T + 67T^{2} \)
71 \( 1 - 2.30T + 71T^{2} \)
73 \( 1 + 3.19T + 73T^{2} \)
79 \( 1 + 6.71T + 79T^{2} \)
83 \( 1 + 18.2T + 83T^{2} \)
89 \( 1 + 1.50T + 89T^{2} \)
97 \( 1 + 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.182234861577908092159455855413, −6.87611681630669854246862555928, −6.41430848517713743336462074270, −5.82639603082197173989983162781, −4.83934229253721202854902250315, −4.29757330439102968084705968159, −3.56618856496280352079943848112, −2.74835090251108993470981599065, −1.65945841947794841284978273456, 0, 1.65945841947794841284978273456, 2.74835090251108993470981599065, 3.56618856496280352079943848112, 4.29757330439102968084705968159, 4.83934229253721202854902250315, 5.82639603082197173989983162781, 6.41430848517713743336462074270, 6.87611681630669854246862555928, 8.182234861577908092159455855413

Graph of the $Z$-function along the critical line