Properties

Label 2-4275-1.1-c1-0-127
Degree 22
Conductor 42754275
Sign 1-1
Analytic cond. 34.136034.1360
Root an. cond. 5.842605.84260
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.65·2-s + 0.726·4-s − 0.377·7-s − 2.10·8-s + 1.37·11-s + 2.82·13-s − 0.622·14-s − 4.92·16-s − 6.37·17-s + 19-s + 2.27·22-s − 6.19·23-s + 4.65·26-s − 0.273·28-s + 3.37·29-s + 2.48·31-s − 3.92·32-s − 10.5·34-s + 5.58·37-s + 1.65·38-s − 8.50·41-s − 12.1·43-s + 1.00·44-s − 10.2·46-s + 6.87·47-s − 6.85·49-s + 2.04·52-s + ⋯
L(s)  = 1  + 1.16·2-s + 0.363·4-s − 0.142·7-s − 0.743·8-s + 0.415·11-s + 0.782·13-s − 0.166·14-s − 1.23·16-s − 1.54·17-s + 0.229·19-s + 0.484·22-s − 1.29·23-s + 0.913·26-s − 0.0517·28-s + 0.627·29-s + 0.445·31-s − 0.693·32-s − 1.80·34-s + 0.917·37-s + 0.267·38-s − 1.32·41-s − 1.85·43-s + 0.150·44-s − 1.50·46-s + 1.00·47-s − 0.979·49-s + 0.284·52-s + ⋯

Functional equation

Λ(s)=(4275s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(4275s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 42754275    =    3252193^{2} \cdot 5^{2} \cdot 19
Sign: 1-1
Analytic conductor: 34.136034.1360
Root analytic conductor: 5.842605.84260
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 4275, ( :1/2), 1)(2,\ 4275,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1 1
19 1T 1 - T
good2 11.65T+2T2 1 - 1.65T + 2T^{2}
7 1+0.377T+7T2 1 + 0.377T + 7T^{2}
11 11.37T+11T2 1 - 1.37T + 11T^{2}
13 12.82T+13T2 1 - 2.82T + 13T^{2}
17 1+6.37T+17T2 1 + 6.37T + 17T^{2}
23 1+6.19T+23T2 1 + 6.19T + 23T^{2}
29 13.37T+29T2 1 - 3.37T + 29T^{2}
31 12.48T+31T2 1 - 2.48T + 31T^{2}
37 15.58T+37T2 1 - 5.58T + 37T^{2}
41 1+8.50T+41T2 1 + 8.50T + 41T^{2}
43 1+12.1T+43T2 1 + 12.1T + 43T^{2}
47 16.87T+47T2 1 - 6.87T + 47T^{2}
53 1+11.5T+53T2 1 + 11.5T + 53T^{2}
59 1+6.05T+59T2 1 + 6.05T + 59T^{2}
61 15.02T+61T2 1 - 5.02T + 61T^{2}
67 13.22T+67T2 1 - 3.22T + 67T^{2}
71 12.30T+71T2 1 - 2.30T + 71T^{2}
73 1+3.19T+73T2 1 + 3.19T + 73T^{2}
79 1+6.71T+79T2 1 + 6.71T + 79T^{2}
83 1+18.2T+83T2 1 + 18.2T + 83T^{2}
89 1+1.50T+89T2 1 + 1.50T + 89T^{2}
97 1+11.7T+97T2 1 + 11.7T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.182234861577908092159455855413, −6.87611681630669854246862555928, −6.41430848517713743336462074270, −5.82639603082197173989983162781, −4.83934229253721202854902250315, −4.29757330439102968084705968159, −3.56618856496280352079943848112, −2.74835090251108993470981599065, −1.65945841947794841284978273456, 0, 1.65945841947794841284978273456, 2.74835090251108993470981599065, 3.56618856496280352079943848112, 4.29757330439102968084705968159, 4.83934229253721202854902250315, 5.82639603082197173989983162781, 6.41430848517713743336462074270, 6.87611681630669854246862555928, 8.182234861577908092159455855413

Graph of the ZZ-function along the critical line