Properties

Label 2-4275-1.1-c1-0-136
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.95·2-s + 1.82·4-s + 3.56·7-s − 0.340·8-s − 5.56·11-s − 5.26·13-s + 6.96·14-s − 4.31·16-s + 1.40·17-s + 19-s − 10.8·22-s − 6.96·23-s − 10.3·26-s + 6.50·28-s − 1.40·29-s + 1.75·31-s − 7.76·32-s + 2.75·34-s − 3.61·37-s + 1.95·38-s − 4.34·41-s + 3.56·43-s − 10.1·44-s − 13.6·46-s − 8.26·47-s + 5.69·49-s − 9.61·52-s + ⋯
L(s)  = 1  + 1.38·2-s + 0.912·4-s + 1.34·7-s − 0.120·8-s − 1.67·11-s − 1.46·13-s + 1.86·14-s − 1.07·16-s + 0.341·17-s + 0.229·19-s − 2.31·22-s − 1.45·23-s − 2.02·26-s + 1.22·28-s − 0.261·29-s + 0.315·31-s − 1.37·32-s + 0.471·34-s − 0.594·37-s + 0.317·38-s − 0.679·41-s + 0.543·43-s − 1.53·44-s − 2.00·46-s − 1.20·47-s + 0.813·49-s − 1.33·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 1.95T + 2T^{2} \)
7 \( 1 - 3.56T + 7T^{2} \)
11 \( 1 + 5.56T + 11T^{2} \)
13 \( 1 + 5.26T + 13T^{2} \)
17 \( 1 - 1.40T + 17T^{2} \)
23 \( 1 + 6.96T + 23T^{2} \)
29 \( 1 + 1.40T + 29T^{2} \)
31 \( 1 - 1.75T + 31T^{2} \)
37 \( 1 + 3.61T + 37T^{2} \)
41 \( 1 + 4.34T + 41T^{2} \)
43 \( 1 - 3.56T + 43T^{2} \)
47 \( 1 + 8.26T + 47T^{2} \)
53 \( 1 + 7.61T + 53T^{2} \)
59 \( 1 + 9.47T + 59T^{2} \)
61 \( 1 - 9.21T + 61T^{2} \)
67 \( 1 - 4.76T + 67T^{2} \)
71 \( 1 - 14.0T + 71T^{2} \)
73 \( 1 + 6.59T + 73T^{2} \)
79 \( 1 - 5.47T + 79T^{2} \)
83 \( 1 + 4.15T + 83T^{2} \)
89 \( 1 - 9.23T + 89T^{2} \)
97 \( 1 + 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86889999139568826536470957187, −7.34938715083010108415824573510, −6.29819399791246483203111757531, −5.37278531923744420303442245109, −5.04777032744290377370965783458, −4.52587171547591653368613668987, −3.49063016580615184669288296634, −2.55223325632033865107478474355, −1.93431037323643681256023393008, 0, 1.93431037323643681256023393008, 2.55223325632033865107478474355, 3.49063016580615184669288296634, 4.52587171547591653368613668987, 5.04777032744290377370965783458, 5.37278531923744420303442245109, 6.29819399791246483203111757531, 7.34938715083010108415824573510, 7.86889999139568826536470957187

Graph of the $Z$-function along the critical line