Properties

Label 2-42e2-1.1-c3-0-20
Degree $2$
Conductor $1764$
Sign $1$
Analytic cond. $104.079$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.5·5-s + 55.2·11-s − 83.5·13-s + 95.2·17-s − 83.5·19-s + 165.·23-s − 12.9·25-s − 110.·29-s + 83.5·31-s + 78·37-s + 412.·41-s + 148·43-s − 465.·47-s − 110.·53-s + 584.·55-s + 550.·59-s + 584.·61-s − 883.·65-s − 260·67-s + 718.·71-s − 668.·73-s + 664·79-s + 126.·83-s + 1.00e3·85-s + 878.·89-s − 883.·95-s − 1.16e3·97-s + ⋯
L(s)  = 1  + 0.946·5-s + 1.51·11-s − 1.78·13-s + 1.35·17-s − 1.00·19-s + 1.50·23-s − 0.103·25-s − 0.707·29-s + 0.483·31-s + 0.346·37-s + 1.57·41-s + 0.524·43-s − 1.44·47-s − 0.286·53-s + 1.43·55-s + 1.21·59-s + 1.22·61-s − 1.68·65-s − 0.474·67-s + 1.20·71-s − 1.07·73-s + 0.945·79-s + 0.167·83-s + 1.28·85-s + 1.04·89-s − 0.954·95-s − 1.22·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(104.079\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.896225723\)
\(L(\frac12)\) \(\approx\) \(2.896225723\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 10.5T + 125T^{2} \)
11 \( 1 - 55.2T + 1.33e3T^{2} \)
13 \( 1 + 83.5T + 2.19e3T^{2} \)
17 \( 1 - 95.2T + 4.91e3T^{2} \)
19 \( 1 + 83.5T + 6.85e3T^{2} \)
23 \( 1 - 165.T + 1.21e4T^{2} \)
29 \( 1 + 110.T + 2.43e4T^{2} \)
31 \( 1 - 83.5T + 2.97e4T^{2} \)
37 \( 1 - 78T + 5.06e4T^{2} \)
41 \( 1 - 412.T + 6.89e4T^{2} \)
43 \( 1 - 148T + 7.95e4T^{2} \)
47 \( 1 + 465.T + 1.03e5T^{2} \)
53 \( 1 + 110.T + 1.48e5T^{2} \)
59 \( 1 - 550.T + 2.05e5T^{2} \)
61 \( 1 - 584.T + 2.26e5T^{2} \)
67 \( 1 + 260T + 3.00e5T^{2} \)
71 \( 1 - 718.T + 3.57e5T^{2} \)
73 \( 1 + 668.T + 3.89e5T^{2} \)
79 \( 1 - 664T + 4.93e5T^{2} \)
83 \( 1 - 126.T + 5.71e5T^{2} \)
89 \( 1 - 878.T + 7.04e5T^{2} \)
97 \( 1 + 1.16e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.331909889320573797526876926913, −8.146993828085371579969024128642, −7.23099391180372710510931422991, −6.56245256709276649577392007100, −5.71244660438377810869209544165, −4.92771736151253921436304491238, −3.96740563076351451566209528488, −2.80921202527105905131872543715, −1.88968294103218296450199345763, −0.826405437379676502600486786119, 0.826405437379676502600486786119, 1.88968294103218296450199345763, 2.80921202527105905131872543715, 3.96740563076351451566209528488, 4.92771736151253921436304491238, 5.71244660438377810869209544165, 6.56245256709276649577392007100, 7.23099391180372710510931422991, 8.146993828085371579969024128642, 9.331909889320573797526876926913

Graph of the $Z$-function along the critical line