L(s) = 1 | + (−0.365 + 0.930i)7-s + (−1.55 + 1.24i)13-s + (−1.61 + 0.930i)19-s + (0.365 + 0.930i)25-s + (1.17 + 0.680i)31-s + (1.40 − 1.29i)37-s + (−1.78 − 0.858i)43-s + (−0.733 − 0.680i)49-s + (1.32 + 1.42i)61-s + (−0.826 + 1.43i)67-s + (0.548 − 0.215i)73-s + (0.733 + 1.26i)79-s + (−0.587 − 1.90i)91-s − 1.56i·97-s + (−0.167 + 0.246i)103-s + ⋯ |
L(s) = 1 | + (−0.365 + 0.930i)7-s + (−1.55 + 1.24i)13-s + (−1.61 + 0.930i)19-s + (0.365 + 0.930i)25-s + (1.17 + 0.680i)31-s + (1.40 − 1.29i)37-s + (−1.78 − 0.858i)43-s + (−0.733 − 0.680i)49-s + (1.32 + 1.42i)61-s + (−0.826 + 1.43i)67-s + (0.548 − 0.215i)73-s + (0.733 + 1.26i)79-s + (−0.587 − 1.90i)91-s − 1.56i·97-s + (−0.167 + 0.246i)103-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(−0.274−0.961i)Λ(1−s)
Λ(s)=(=(1764s/2ΓC(s)L(s)(−0.274−0.961i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
−0.274−0.961i
|
Analytic conductor: |
0.880350 |
Root analytic conductor: |
0.938270 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(1081,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :0), −0.274−0.961i)
|
Particular Values
L(21) |
≈ |
0.7653237019 |
L(21) |
≈ |
0.7653237019 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(0.365−0.930i)T |
good | 5 | 1+(−0.365−0.930i)T2 |
| 11 | 1+(0.955−0.294i)T2 |
| 13 | 1+(1.55−1.24i)T+(0.222−0.974i)T2 |
| 17 | 1+(−0.826−0.563i)T2 |
| 19 | 1+(1.61−0.930i)T+(0.5−0.866i)T2 |
| 23 | 1+(0.826−0.563i)T2 |
| 29 | 1+(−0.900+0.433i)T2 |
| 31 | 1+(−1.17−0.680i)T+(0.5+0.866i)T2 |
| 37 | 1+(−1.40+1.29i)T+(0.0747−0.997i)T2 |
| 41 | 1+(−0.623+0.781i)T2 |
| 43 | 1+(1.78+0.858i)T+(0.623+0.781i)T2 |
| 47 | 1+(0.733+0.680i)T2 |
| 53 | 1+(0.0747+0.997i)T2 |
| 59 | 1+(−0.365+0.930i)T2 |
| 61 | 1+(−1.32−1.42i)T+(−0.0747+0.997i)T2 |
| 67 | 1+(0.826−1.43i)T+(−0.5−0.866i)T2 |
| 71 | 1+(−0.900−0.433i)T2 |
| 73 | 1+(−0.548+0.215i)T+(0.733−0.680i)T2 |
| 79 | 1+(−0.733−1.26i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.222+0.974i)T2 |
| 89 | 1+(−0.955−0.294i)T2 |
| 97 | 1+1.56iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.714490521548968212166206024888, −8.913597174780715938940791415255, −8.326852409993621433550167241234, −7.21204769002994785989324705132, −6.58917569887027356563718296683, −5.70969505752996765975276929971, −4.81488161385498421540891329398, −3.95875732969036900714205734194, −2.66999265226807694274770003678, −1.92719683531556375317729741188,
0.54408882113953902598296067263, 2.36801178250083128416213148718, 3.18421111788138313269918125658, 4.49825228991454747589270588122, 4.88491363054085725762209691712, 6.31599121857812702925562037982, 6.73719411044172293462028141027, 7.84914540446961035808838310766, 8.206417038410405124296802332101, 9.461734841124064988551166785497