L(s) = 1 | + (3 + 5.19i)5-s + (18 − 31.1i)11-s + 62·13-s + (57 − 98.7i)17-s + (38 + 65.8i)19-s + (−12 − 20.7i)23-s + (44.5 − 77.0i)25-s − 54·29-s + (56 − 96.9i)31-s + (89 + 154. i)37-s − 378·41-s − 172·43-s + (−96 − 166. i)47-s + (−201 + 348. i)53-s + 216·55-s + ⋯ |
L(s) = 1 | + (0.268 + 0.464i)5-s + (0.493 − 0.854i)11-s + 1.32·13-s + (0.813 − 1.40i)17-s + (0.458 + 0.794i)19-s + (−0.108 − 0.188i)23-s + (0.355 − 0.616i)25-s − 0.345·29-s + (0.324 − 0.561i)31-s + (0.395 + 0.684i)37-s − 1.43·41-s − 0.609·43-s + (−0.297 − 0.516i)47-s + (−0.520 + 0.902i)53-s + 0.529·55-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.605+0.795i)Λ(4−s)
Λ(s)=(=(1764s/2ΓC(s+3/2)L(s)(0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
0.605+0.795i
|
Analytic conductor: |
104.079 |
Root analytic conductor: |
10.2019 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :3/2), 0.605+0.795i)
|
Particular Values
L(2) |
≈ |
2.537984225 |
L(21) |
≈ |
2.537984225 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−3−5.19i)T+(−62.5+108.i)T2 |
| 11 | 1+(−18+31.1i)T+(−665.5−1.15e3i)T2 |
| 13 | 1−62T+2.19e3T2 |
| 17 | 1+(−57+98.7i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(−38−65.8i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(12+20.7i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+54T+2.43e4T2 |
| 31 | 1+(−56+96.9i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(−89−154.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+378T+6.89e4T2 |
| 43 | 1+172T+7.95e4T2 |
| 47 | 1+(96+166.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(201−348.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−198+342.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(127+219.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−506+876.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+840T+3.57e5T2 |
| 73 | 1+(445−770.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(40+69.2i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−108T+5.71e5T2 |
| 89 | 1+(819+1.41e3i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−1.01e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.721452343943278549383145304237, −8.152136421632625136733224169077, −7.17816029611407992122616799436, −6.30815119834359154151319725987, −5.78773001286347016533481159173, −4.74165644082363399631367881562, −3.53044786399619899466539462131, −3.02855194034514112733958211792, −1.61695183772888529540617440184, −0.59878550989175080128156856499,
1.12547451513669133892225638442, 1.75236900299777579815509179670, 3.24262779659524419082455593518, 4.02088769281063797096125660513, 5.01606429151151892555810103087, 5.82410703443406472023309587185, 6.61889124880372168107656230822, 7.47029990351427067753005347970, 8.441200011104557433124453276930, 8.949089067676813534953711212213