L(s) = 1 | + (−1.72 + 0.124i)3-s + (−1.73 + 3.01i)5-s + (2.96 − 0.431i)9-s + (−1.25 − 2.17i)11-s + (−0.292 + 0.505i)13-s + (2.62 − 5.42i)15-s + 1.09·17-s − 5.93·19-s + (−3.19 + 5.52i)23-s + (−3.55 − 6.15i)25-s + (−5.07 + 1.11i)27-s + (0.918 + 1.59i)29-s + (−3.51 + 6.09i)31-s + (2.44 + 3.60i)33-s − 1.40·37-s + ⋯ |
L(s) = 1 | + (−0.997 + 0.0721i)3-s + (−0.778 + 1.34i)5-s + (0.989 − 0.143i)9-s + (−0.379 − 0.656i)11-s + (−0.0810 + 0.140i)13-s + (0.678 − 1.40i)15-s + 0.265·17-s − 1.36·19-s + (−0.665 + 1.15i)23-s + (−0.710 − 1.23i)25-s + (−0.976 + 0.214i)27-s + (0.170 + 0.295i)29-s + (−0.631 + 1.09i)31-s + (0.425 + 0.627i)33-s − 0.231·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.313 + 0.949i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.313 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3476519064\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3476519064\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.72 - 0.124i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.73 - 3.01i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.25 + 2.17i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.292 - 0.505i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.09T + 17T^{2} \) |
| 19 | \( 1 + 5.93T + 19T^{2} \) |
| 23 | \( 1 + (3.19 - 5.52i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.918 - 1.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.51 - 6.09i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 1.40T + 37T^{2} \) |
| 41 | \( 1 + (-5.37 + 9.31i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.67 + 9.83i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.76 - 6.52i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 11.6T + 53T^{2} \) |
| 59 | \( 1 + (-2.22 + 3.85i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.17 + 10.6i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.33 + 10.9i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.93T + 71T^{2} \) |
| 73 | \( 1 - 8.71T + 73T^{2} \) |
| 79 | \( 1 + (-0.280 - 0.485i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.68 + 6.38i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 12.1T + 89T^{2} \) |
| 97 | \( 1 + (6.98 + 12.0i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.217237232050430273013994259126, −8.167135176280835190392007942556, −7.33740177228996824869941513501, −6.79261291213393413620606959807, −5.98722551804189655471573395658, −5.18907297628816534698443414353, −3.97686316805466555623818608643, −3.39991089046578261480340387825, −2.03741848412178840070040362449, −0.19049812709674808531589148802,
0.923916308569710567632737425637, 2.25779341363306444709129470639, 4.16673041092370958248955059272, 4.39830649077907980905875010050, 5.32698404145192458756348121595, 6.12985274750084570377972304229, 7.08650178993723346660949370236, 7.970625843578736775795026261699, 8.484846483616858177209772941595, 9.537280136241147625368058798974