Properties

Label 2-4304-1.1-c1-0-118
Degree $2$
Conductor $4304$
Sign $-1$
Analytic cond. $34.3676$
Root an. cond. $5.86238$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.92·3-s − 2.54·5-s − 2.70·7-s + 5.57·9-s − 2.51·11-s + 1.02·13-s − 7.45·15-s − 0.352·17-s + 7.25·19-s − 7.91·21-s − 2.93·23-s + 1.48·25-s + 7.55·27-s + 1.15·29-s − 3.02·31-s − 7.35·33-s + 6.88·35-s − 8.69·37-s + 2.98·39-s + 1.09·41-s − 4.12·43-s − 14.2·45-s + 2.15·47-s + 0.308·49-s − 1.03·51-s − 2.66·53-s + 6.39·55-s + ⋯
L(s)  = 1  + 1.69·3-s − 1.13·5-s − 1.02·7-s + 1.85·9-s − 0.756·11-s + 0.283·13-s − 1.92·15-s − 0.0855·17-s + 1.66·19-s − 1.72·21-s − 0.611·23-s + 0.297·25-s + 1.45·27-s + 0.214·29-s − 0.542·31-s − 1.28·33-s + 1.16·35-s − 1.43·37-s + 0.478·39-s + 0.170·41-s − 0.629·43-s − 2.11·45-s + 0.314·47-s + 0.0440·49-s − 0.144·51-s − 0.365·53-s + 0.862·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4304\)    =    \(2^{4} \cdot 269\)
Sign: $-1$
Analytic conductor: \(34.3676\)
Root analytic conductor: \(5.86238\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4304,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
269 \( 1 + T \)
good3 \( 1 - 2.92T + 3T^{2} \)
5 \( 1 + 2.54T + 5T^{2} \)
7 \( 1 + 2.70T + 7T^{2} \)
11 \( 1 + 2.51T + 11T^{2} \)
13 \( 1 - 1.02T + 13T^{2} \)
17 \( 1 + 0.352T + 17T^{2} \)
19 \( 1 - 7.25T + 19T^{2} \)
23 \( 1 + 2.93T + 23T^{2} \)
29 \( 1 - 1.15T + 29T^{2} \)
31 \( 1 + 3.02T + 31T^{2} \)
37 \( 1 + 8.69T + 37T^{2} \)
41 \( 1 - 1.09T + 41T^{2} \)
43 \( 1 + 4.12T + 43T^{2} \)
47 \( 1 - 2.15T + 47T^{2} \)
53 \( 1 + 2.66T + 53T^{2} \)
59 \( 1 + 7.47T + 59T^{2} \)
61 \( 1 + 14.2T + 61T^{2} \)
67 \( 1 + 6.89T + 67T^{2} \)
71 \( 1 - 3.29T + 71T^{2} \)
73 \( 1 - 0.0902T + 73T^{2} \)
79 \( 1 + 11.7T + 79T^{2} \)
83 \( 1 + 7.80T + 83T^{2} \)
89 \( 1 - 0.397T + 89T^{2} \)
97 \( 1 - 1.05T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.945198322818822834328045353082, −7.53928786585043002108823535383, −6.95456727924747600338435430983, −5.85593420328570223968053493212, −4.76406254002509312902180381018, −3.84177057707705627819759717268, −3.28051069539121598667366424038, −2.85603906964961265469184350587, −1.60894085843803229738741102040, 0, 1.60894085843803229738741102040, 2.85603906964961265469184350587, 3.28051069539121598667366424038, 3.84177057707705627819759717268, 4.76406254002509312902180381018, 5.85593420328570223968053493212, 6.95456727924747600338435430983, 7.53928786585043002108823535383, 7.945198322818822834328045353082

Graph of the $Z$-function along the critical line