L(s) = 1 | + 1.48·3-s + 3.18·5-s − 3.31·7-s − 0.793·9-s − 0.867·11-s − 2.69·13-s + 4.73·15-s + 2.03·17-s − 8.43·19-s − 4.91·21-s + 6.66·23-s + 5.14·25-s − 5.63·27-s − 7.02·29-s − 4.72·31-s − 1.28·33-s − 10.5·35-s − 1.00·37-s − 4.00·39-s + 11.7·41-s − 1.30·43-s − 2.52·45-s − 5.57·47-s + 3.97·49-s + 3.02·51-s − 5.95·53-s − 2.76·55-s + ⋯ |
L(s) = 1 | + 0.857·3-s + 1.42·5-s − 1.25·7-s − 0.264·9-s − 0.261·11-s − 0.747·13-s + 1.22·15-s + 0.493·17-s − 1.93·19-s − 1.07·21-s + 1.38·23-s + 1.02·25-s − 1.08·27-s − 1.30·29-s − 0.848·31-s − 0.224·33-s − 1.78·35-s − 0.165·37-s − 0.640·39-s + 1.82·41-s − 0.199·43-s − 0.376·45-s − 0.813·47-s + 0.567·49-s + 0.423·51-s − 0.817·53-s − 0.372·55-s + ⋯ |
Λ(s)=(=(4304s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4304s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 269 | 1−T |
good | 3 | 1−1.48T+3T2 |
| 5 | 1−3.18T+5T2 |
| 7 | 1+3.31T+7T2 |
| 11 | 1+0.867T+11T2 |
| 13 | 1+2.69T+13T2 |
| 17 | 1−2.03T+17T2 |
| 19 | 1+8.43T+19T2 |
| 23 | 1−6.66T+23T2 |
| 29 | 1+7.02T+29T2 |
| 31 | 1+4.72T+31T2 |
| 37 | 1+1.00T+37T2 |
| 41 | 1−11.7T+41T2 |
| 43 | 1+1.30T+43T2 |
| 47 | 1+5.57T+47T2 |
| 53 | 1+5.95T+53T2 |
| 59 | 1+9.60T+59T2 |
| 61 | 1−5.70T+61T2 |
| 67 | 1−4.86T+67T2 |
| 71 | 1−2.44T+71T2 |
| 73 | 1−0.698T+73T2 |
| 79 | 1−3.24T+79T2 |
| 83 | 1+15.3T+83T2 |
| 89 | 1+6.06T+89T2 |
| 97 | 1+7.76T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.132990615005969296661931998879, −7.23112832077786520343468118403, −6.51611127601154433720487330687, −5.85351250745129015785207560926, −5.23374110035147950287181168966, −4.05867125238433398732176349523, −3.07952971693879330318221056637, −2.54168558773085624465513847514, −1.76941416862055347408073050612, 0,
1.76941416862055347408073050612, 2.54168558773085624465513847514, 3.07952971693879330318221056637, 4.05867125238433398732176349523, 5.23374110035147950287181168966, 5.85351250745129015785207560926, 6.51611127601154433720487330687, 7.23112832077786520343468118403, 8.132990615005969296661931998879