Properties

Label 2-4304-1.1-c1-0-125
Degree $2$
Conductor $4304$
Sign $-1$
Analytic cond. $34.3676$
Root an. cond. $5.86238$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.48·3-s + 3.18·5-s − 3.31·7-s − 0.793·9-s − 0.867·11-s − 2.69·13-s + 4.73·15-s + 2.03·17-s − 8.43·19-s − 4.91·21-s + 6.66·23-s + 5.14·25-s − 5.63·27-s − 7.02·29-s − 4.72·31-s − 1.28·33-s − 10.5·35-s − 1.00·37-s − 4.00·39-s + 11.7·41-s − 1.30·43-s − 2.52·45-s − 5.57·47-s + 3.97·49-s + 3.02·51-s − 5.95·53-s − 2.76·55-s + ⋯
L(s)  = 1  + 0.857·3-s + 1.42·5-s − 1.25·7-s − 0.264·9-s − 0.261·11-s − 0.747·13-s + 1.22·15-s + 0.493·17-s − 1.93·19-s − 1.07·21-s + 1.38·23-s + 1.02·25-s − 1.08·27-s − 1.30·29-s − 0.848·31-s − 0.224·33-s − 1.78·35-s − 0.165·37-s − 0.640·39-s + 1.82·41-s − 0.199·43-s − 0.376·45-s − 0.813·47-s + 0.567·49-s + 0.423·51-s − 0.817·53-s − 0.372·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4304\)    =    \(2^{4} \cdot 269\)
Sign: $-1$
Analytic conductor: \(34.3676\)
Root analytic conductor: \(5.86238\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4304,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
269 \( 1 - T \)
good3 \( 1 - 1.48T + 3T^{2} \)
5 \( 1 - 3.18T + 5T^{2} \)
7 \( 1 + 3.31T + 7T^{2} \)
11 \( 1 + 0.867T + 11T^{2} \)
13 \( 1 + 2.69T + 13T^{2} \)
17 \( 1 - 2.03T + 17T^{2} \)
19 \( 1 + 8.43T + 19T^{2} \)
23 \( 1 - 6.66T + 23T^{2} \)
29 \( 1 + 7.02T + 29T^{2} \)
31 \( 1 + 4.72T + 31T^{2} \)
37 \( 1 + 1.00T + 37T^{2} \)
41 \( 1 - 11.7T + 41T^{2} \)
43 \( 1 + 1.30T + 43T^{2} \)
47 \( 1 + 5.57T + 47T^{2} \)
53 \( 1 + 5.95T + 53T^{2} \)
59 \( 1 + 9.60T + 59T^{2} \)
61 \( 1 - 5.70T + 61T^{2} \)
67 \( 1 - 4.86T + 67T^{2} \)
71 \( 1 - 2.44T + 71T^{2} \)
73 \( 1 - 0.698T + 73T^{2} \)
79 \( 1 - 3.24T + 79T^{2} \)
83 \( 1 + 15.3T + 83T^{2} \)
89 \( 1 + 6.06T + 89T^{2} \)
97 \( 1 + 7.76T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.132990615005969296661931998879, −7.23112832077786520343468118403, −6.51611127601154433720487330687, −5.85351250745129015785207560926, −5.23374110035147950287181168966, −4.05867125238433398732176349523, −3.07952971693879330318221056637, −2.54168558773085624465513847514, −1.76941416862055347408073050612, 0, 1.76941416862055347408073050612, 2.54168558773085624465513847514, 3.07952971693879330318221056637, 4.05867125238433398732176349523, 5.23374110035147950287181168966, 5.85351250745129015785207560926, 6.51611127601154433720487330687, 7.23112832077786520343468118403, 8.132990615005969296661931998879

Graph of the $Z$-function along the critical line