Properties

Label 2-4304-1.1-c1-0-126
Degree $2$
Conductor $4304$
Sign $-1$
Analytic cond. $34.3676$
Root an. cond. $5.86238$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.01·3-s + 0.217·5-s + 2.74·7-s − 1.97·9-s − 1.10·11-s + 3.99·13-s + 0.219·15-s − 2.81·17-s − 8.43·19-s + 2.78·21-s − 1.44·23-s − 4.95·25-s − 5.03·27-s − 5.00·29-s − 3.45·31-s − 1.11·33-s + 0.597·35-s + 2.96·37-s + 4.04·39-s − 11.5·41-s − 5.07·43-s − 0.429·45-s + 8.95·47-s + 0.555·49-s − 2.84·51-s − 2.67·53-s − 0.240·55-s + ⋯
L(s)  = 1  + 0.584·3-s + 0.0971·5-s + 1.03·7-s − 0.658·9-s − 0.333·11-s + 1.10·13-s + 0.0567·15-s − 0.683·17-s − 1.93·19-s + 0.606·21-s − 0.301·23-s − 0.990·25-s − 0.968·27-s − 0.928·29-s − 0.620·31-s − 0.194·33-s + 0.100·35-s + 0.487·37-s + 0.647·39-s − 1.80·41-s − 0.774·43-s − 0.0640·45-s + 1.30·47-s + 0.0793·49-s − 0.399·51-s − 0.367·53-s − 0.0324·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4304\)    =    \(2^{4} \cdot 269\)
Sign: $-1$
Analytic conductor: \(34.3676\)
Root analytic conductor: \(5.86238\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4304,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
269 \( 1 + T \)
good3 \( 1 - 1.01T + 3T^{2} \)
5 \( 1 - 0.217T + 5T^{2} \)
7 \( 1 - 2.74T + 7T^{2} \)
11 \( 1 + 1.10T + 11T^{2} \)
13 \( 1 - 3.99T + 13T^{2} \)
17 \( 1 + 2.81T + 17T^{2} \)
19 \( 1 + 8.43T + 19T^{2} \)
23 \( 1 + 1.44T + 23T^{2} \)
29 \( 1 + 5.00T + 29T^{2} \)
31 \( 1 + 3.45T + 31T^{2} \)
37 \( 1 - 2.96T + 37T^{2} \)
41 \( 1 + 11.5T + 41T^{2} \)
43 \( 1 + 5.07T + 43T^{2} \)
47 \( 1 - 8.95T + 47T^{2} \)
53 \( 1 + 2.67T + 53T^{2} \)
59 \( 1 - 3.44T + 59T^{2} \)
61 \( 1 + 11.5T + 61T^{2} \)
67 \( 1 - 4.43T + 67T^{2} \)
71 \( 1 - 3.84T + 71T^{2} \)
73 \( 1 + 10.9T + 73T^{2} \)
79 \( 1 - 5.55T + 79T^{2} \)
83 \( 1 - 4.47T + 83T^{2} \)
89 \( 1 - 10.8T + 89T^{2} \)
97 \( 1 + 2.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.155221864994629413201702068004, −7.54811321498126270013033008106, −6.43445697474110199744977298543, −5.88378507623541834164081025135, −4.99738876303499431009940249758, −4.12682303081906551045817828786, −3.45141509478160475883082190090, −2.21614335610604889972346402159, −1.77499255526640895610597875253, 0, 1.77499255526640895610597875253, 2.21614335610604889972346402159, 3.45141509478160475883082190090, 4.12682303081906551045817828786, 4.99738876303499431009940249758, 5.88378507623541834164081025135, 6.43445697474110199744977298543, 7.54811321498126270013033008106, 8.155221864994629413201702068004

Graph of the $Z$-function along the critical line