Properties

Label 2-4304-1.1-c1-0-129
Degree $2$
Conductor $4304$
Sign $-1$
Analytic cond. $34.3676$
Root an. cond. $5.86238$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.39·3-s + 1.13·5-s + 0.122·7-s − 1.05·9-s + 1.04·11-s + 1.87·13-s + 1.58·15-s − 4.65·17-s − 4.43·19-s + 0.170·21-s − 5.95·23-s − 3.71·25-s − 5.65·27-s − 4.89·29-s − 2.03·31-s + 1.45·33-s + 0.138·35-s − 5.04·37-s + 2.60·39-s + 10.8·41-s − 1.42·43-s − 1.20·45-s − 8.58·47-s − 6.98·49-s − 6.48·51-s − 1.94·53-s + 1.18·55-s + ⋯
L(s)  = 1  + 0.804·3-s + 0.507·5-s + 0.0462·7-s − 0.352·9-s + 0.314·11-s + 0.518·13-s + 0.408·15-s − 1.12·17-s − 1.01·19-s + 0.0371·21-s − 1.24·23-s − 0.742·25-s − 1.08·27-s − 0.909·29-s − 0.365·31-s + 0.252·33-s + 0.0234·35-s − 0.829·37-s + 0.417·39-s + 1.69·41-s − 0.217·43-s − 0.179·45-s − 1.25·47-s − 0.997·49-s − 0.907·51-s − 0.267·53-s + 0.159·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4304\)    =    \(2^{4} \cdot 269\)
Sign: $-1$
Analytic conductor: \(34.3676\)
Root analytic conductor: \(5.86238\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4304,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
269 \( 1 + T \)
good3 \( 1 - 1.39T + 3T^{2} \)
5 \( 1 - 1.13T + 5T^{2} \)
7 \( 1 - 0.122T + 7T^{2} \)
11 \( 1 - 1.04T + 11T^{2} \)
13 \( 1 - 1.87T + 13T^{2} \)
17 \( 1 + 4.65T + 17T^{2} \)
19 \( 1 + 4.43T + 19T^{2} \)
23 \( 1 + 5.95T + 23T^{2} \)
29 \( 1 + 4.89T + 29T^{2} \)
31 \( 1 + 2.03T + 31T^{2} \)
37 \( 1 + 5.04T + 37T^{2} \)
41 \( 1 - 10.8T + 41T^{2} \)
43 \( 1 + 1.42T + 43T^{2} \)
47 \( 1 + 8.58T + 47T^{2} \)
53 \( 1 + 1.94T + 53T^{2} \)
59 \( 1 + 10.6T + 59T^{2} \)
61 \( 1 - 5.47T + 61T^{2} \)
67 \( 1 + 7.37T + 67T^{2} \)
71 \( 1 - 5.54T + 71T^{2} \)
73 \( 1 - 9.82T + 73T^{2} \)
79 \( 1 - 6.01T + 79T^{2} \)
83 \( 1 - 8.42T + 83T^{2} \)
89 \( 1 - 1.48T + 89T^{2} \)
97 \( 1 - 1.99T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.119605213142832267197526484703, −7.48079628722363559102276454466, −6.24917647625324350732725807115, −6.15413749882031133590867248805, −4.98714384577896301644551623807, −4.03092270233291571272096262871, −3.42960782874919352302498067565, −2.23467820946110499880276457755, −1.84206838083076597171661082562, 0, 1.84206838083076597171661082562, 2.23467820946110499880276457755, 3.42960782874919352302498067565, 4.03092270233291571272096262871, 4.98714384577896301644551623807, 6.15413749882031133590867248805, 6.24917647625324350732725807115, 7.48079628722363559102276454466, 8.119605213142832267197526484703

Graph of the $Z$-function along the critical line