L(s) = 1 | + 1.39·3-s + 1.13·5-s + 0.122·7-s − 1.05·9-s + 1.04·11-s + 1.87·13-s + 1.58·15-s − 4.65·17-s − 4.43·19-s + 0.170·21-s − 5.95·23-s − 3.71·25-s − 5.65·27-s − 4.89·29-s − 2.03·31-s + 1.45·33-s + 0.138·35-s − 5.04·37-s + 2.60·39-s + 10.8·41-s − 1.42·43-s − 1.20·45-s − 8.58·47-s − 6.98·49-s − 6.48·51-s − 1.94·53-s + 1.18·55-s + ⋯ |
L(s) = 1 | + 0.804·3-s + 0.507·5-s + 0.0462·7-s − 0.352·9-s + 0.314·11-s + 0.518·13-s + 0.408·15-s − 1.12·17-s − 1.01·19-s + 0.0371·21-s − 1.24·23-s − 0.742·25-s − 1.08·27-s − 0.909·29-s − 0.365·31-s + 0.252·33-s + 0.0234·35-s − 0.829·37-s + 0.417·39-s + 1.69·41-s − 0.217·43-s − 0.179·45-s − 1.25·47-s − 0.997·49-s − 0.907·51-s − 0.267·53-s + 0.159·55-s + ⋯ |
Λ(s)=(=(4304s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4304s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 269 | 1+T |
good | 3 | 1−1.39T+3T2 |
| 5 | 1−1.13T+5T2 |
| 7 | 1−0.122T+7T2 |
| 11 | 1−1.04T+11T2 |
| 13 | 1−1.87T+13T2 |
| 17 | 1+4.65T+17T2 |
| 19 | 1+4.43T+19T2 |
| 23 | 1+5.95T+23T2 |
| 29 | 1+4.89T+29T2 |
| 31 | 1+2.03T+31T2 |
| 37 | 1+5.04T+37T2 |
| 41 | 1−10.8T+41T2 |
| 43 | 1+1.42T+43T2 |
| 47 | 1+8.58T+47T2 |
| 53 | 1+1.94T+53T2 |
| 59 | 1+10.6T+59T2 |
| 61 | 1−5.47T+61T2 |
| 67 | 1+7.37T+67T2 |
| 71 | 1−5.54T+71T2 |
| 73 | 1−9.82T+73T2 |
| 79 | 1−6.01T+79T2 |
| 83 | 1−8.42T+83T2 |
| 89 | 1−1.48T+89T2 |
| 97 | 1−1.99T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.119605213142832267197526484703, −7.48079628722363559102276454466, −6.24917647625324350732725807115, −6.15413749882031133590867248805, −4.98714384577896301644551623807, −4.03092270233291571272096262871, −3.42960782874919352302498067565, −2.23467820946110499880276457755, −1.84206838083076597171661082562, 0,
1.84206838083076597171661082562, 2.23467820946110499880276457755, 3.42960782874919352302498067565, 4.03092270233291571272096262871, 4.98714384577896301644551623807, 6.15413749882031133590867248805, 6.24917647625324350732725807115, 7.48079628722363559102276454466, 8.119605213142832267197526484703