L(s) = 1 | + (0.785 − 1.52i)2-s + (0.628 + 5.71i)3-s + (0.608 + 0.850i)4-s + (−4.29 − 2.01i)5-s + (9.22 + 3.52i)6-s + (2.32 + 10.4i)7-s + (8.58 − 1.26i)8-s + (−23.4 + 5.21i)9-s + (−6.45 + 4.98i)10-s + (14.2 − 7.97i)11-s + (−4.47 + 4.01i)12-s + (−14.2 + 7.34i)13-s + (17.7 + 4.64i)14-s + (8.80 − 25.8i)15-s + (3.46 − 10.1i)16-s + (7.96 + 14.1i)17-s + ⋯ |
L(s) = 1 | + (0.392 − 0.764i)2-s + (0.209 + 1.90i)3-s + (0.152 + 0.212i)4-s + (−0.859 − 0.402i)5-s + (1.53 + 0.587i)6-s + (0.331 + 1.48i)7-s + (1.07 − 0.157i)8-s + (−2.60 + 0.579i)9-s + (−0.645 + 0.498i)10-s + (1.29 − 0.724i)11-s + (−0.373 + 0.334i)12-s + (−1.09 + 0.564i)13-s + (1.26 + 0.331i)14-s + (0.586 − 1.72i)15-s + (0.216 − 0.634i)16-s + (0.468 + 0.834i)17-s + ⋯ |
Λ(s)=(=(431s/2ΓC(s)L(s)(−0.618−0.786i)Λ(3−s)
Λ(s)=(=(431s/2ΓC(s+1)L(s)(−0.618−0.786i)Λ(1−s)
Degree: |
2 |
Conductor: |
431
|
Sign: |
−0.618−0.786i
|
Analytic conductor: |
11.7438 |
Root analytic conductor: |
3.42693 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ431(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 431, ( :1), −0.618−0.786i)
|
Particular Values
L(23) |
≈ |
0.850555+1.75111i |
L(21) |
≈ |
0.850555+1.75111i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 431 | 1+(−305.+303.i)T |
good | 2 | 1+(−0.785+1.52i)T+(−2.32−3.25i)T2 |
| 3 | 1+(−0.628−5.71i)T+(−8.78+1.95i)T2 |
| 5 | 1+(4.29+2.01i)T+(15.9+19.2i)T2 |
| 7 | 1+(−2.32−10.4i)T+(−44.3+20.7i)T2 |
| 11 | 1+(−14.2+7.97i)T+(63.0−103.i)T2 |
| 13 | 1+(14.2−7.34i)T+(98.3−137.i)T2 |
| 17 | 1+(−7.96−14.1i)T+(−150.+246.i)T2 |
| 19 | 1+(5.01−2.35i)T+(230.−277.i)T2 |
| 23 | 1+(19.8+20.5i)T+(−19.3+528.i)T2 |
| 29 | 1+(−20.7+29.0i)T+(−271.−795.i)T2 |
| 31 | 1+(−16.4−42.9i)T+(−715.+641.i)T2 |
| 37 | 1+(20.1+5.27i)T+(1.19e3+670.i)T2 |
| 41 | 1+(7.18−21.0i)T+(−1.33e3−1.02e3i)T2 |
| 43 | 1+(12.1−15.7i)T+(−467.−1.78e3i)T2 |
| 47 | 1+(−0.223+3.05i)T+(−2.18e3−321.i)T2 |
| 53 | 1+(40.0−2.93i)T+(2.77e3−408.i)T2 |
| 59 | 1+(−9.62+18.7i)T+(−2.02e3−2.83e3i)T2 |
| 61 | 1+(−17.1−40.3i)T+(−2.58e3+2.67e3i)T2 |
| 67 | 1+(−60.2−15.7i)T+(3.91e3+2.19e3i)T2 |
| 71 | 1+(7.23−98.8i)T+(−4.98e3−733.i)T2 |
| 73 | 1+(−77.8−117.i)T+(−2.08e3+4.90e3i)T2 |
| 79 | 1+(−36.5+121.i)T+(−5.20e3−3.44e3i)T2 |
| 83 | 1+(−92.4+10.1i)T+(6.72e3−1.49e3i)T2 |
| 89 | 1+(−15.5+2.87i)T+(7.39e3−2.82e3i)T2 |
| 97 | 1+(−26.8+8.06i)T+(7.84e3−5.19e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54397383249473174173433762951, −10.42722317632223872154821295067, −9.627070894855366930976685924470, −8.509670449421917815007677417458, −8.301907944941630207511340169227, −6.22251723693815830226562850509, −4.92929368272519272741751983906, −4.25571461307045459816287542195, −3.46427355478191742887819667972, −2.35796067804111850142213292995,
0.70769052850832708673338709346, 1.90599312776580665235881758950, 3.62342601858841156724008534603, 4.98587213247194708137820393995, 6.40709215500196779545405632156, 7.04939191271752095815745208959, 7.53553903987568327510357043323, 7.963136801027684500198073315805, 9.688717257799471822500991115738, 10.92613415477423679505918488129