L(s) = 1 | + (0.834 − 1.62i)2-s + (−0.555 − 5.05i)3-s + (0.389 + 0.544i)4-s + (6.62 + 3.10i)5-s + (−8.66 − 3.31i)6-s + (1.68 + 7.57i)7-s + (8.43 − 1.24i)8-s + (−16.4 + 3.65i)9-s + (10.5 − 8.15i)10-s + (4.07 − 2.28i)11-s + (2.53 − 2.27i)12-s + (−3.71 + 1.90i)13-s + (13.7 + 3.58i)14-s + (12.0 − 35.1i)15-s + (4.15 − 12.1i)16-s + (−10.2 − 18.3i)17-s + ⋯ |
L(s) = 1 | + (0.417 − 0.811i)2-s + (−0.185 − 1.68i)3-s + (0.0974 + 0.136i)4-s + (1.32 + 0.621i)5-s + (−1.44 − 0.552i)6-s + (0.241 + 1.08i)7-s + (1.05 − 0.155i)8-s + (−1.82 + 0.406i)9-s + (1.05 − 0.815i)10-s + (0.370 − 0.208i)11-s + (0.211 − 0.189i)12-s + (−0.285 + 0.146i)13-s + (0.979 + 0.256i)14-s + (0.800 − 2.34i)15-s + (0.259 − 0.761i)16-s + (−0.605 − 1.07i)17-s + ⋯ |
Λ(s)=(=(431s/2ΓC(s)L(s)(−0.202+0.979i)Λ(3−s)
Λ(s)=(=(431s/2ΓC(s+1)L(s)(−0.202+0.979i)Λ(1−s)
Degree: |
2 |
Conductor: |
431
|
Sign: |
−0.202+0.979i
|
Analytic conductor: |
11.7438 |
Root analytic conductor: |
3.42693 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ431(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 431, ( :1), −0.202+0.979i)
|
Particular Values
L(23) |
≈ |
1.83490−2.25344i |
L(21) |
≈ |
1.83490−2.25344i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 431 | 1+(429.+38.3i)T |
good | 2 | 1+(−0.834+1.62i)T+(−2.32−3.25i)T2 |
| 3 | 1+(0.555+5.05i)T+(−8.78+1.95i)T2 |
| 5 | 1+(−6.62−3.10i)T+(15.9+19.2i)T2 |
| 7 | 1+(−1.68−7.57i)T+(−44.3+20.7i)T2 |
| 11 | 1+(−4.07+2.28i)T+(63.0−103.i)T2 |
| 13 | 1+(3.71−1.90i)T+(98.3−137.i)T2 |
| 17 | 1+(10.2+18.3i)T+(−150.+246.i)T2 |
| 19 | 1+(−26.8+12.5i)T+(230.−277.i)T2 |
| 23 | 1+(1.65+1.71i)T+(−19.3+528.i)T2 |
| 29 | 1+(−6.96+9.73i)T+(−271.−795.i)T2 |
| 31 | 1+(5.81+15.1i)T+(−715.+641.i)T2 |
| 37 | 1+(16.6+4.36i)T+(1.19e3+670.i)T2 |
| 41 | 1+(9.02−26.4i)T+(−1.33e3−1.02e3i)T2 |
| 43 | 1+(11.9−15.4i)T+(−467.−1.78e3i)T2 |
| 47 | 1+(4.26−58.2i)T+(−2.18e3−321.i)T2 |
| 53 | 1+(−45.6+3.33i)T+(2.77e3−408.i)T2 |
| 59 | 1+(23.4−45.6i)T+(−2.02e3−2.83e3i)T2 |
| 61 | 1+(42.7+100.i)T+(−2.58e3+2.67e3i)T2 |
| 67 | 1+(102.+26.8i)T+(3.91e3+2.19e3i)T2 |
| 71 | 1+(8.46−115.i)T+(−4.98e3−733.i)T2 |
| 73 | 1+(−68.0−102.i)T+(−2.08e3+4.90e3i)T2 |
| 79 | 1+(−0.0698+0.232i)T+(−5.20e3−3.44e3i)T2 |
| 83 | 1+(61.2−6.73i)T+(6.72e3−1.49e3i)T2 |
| 89 | 1+(48.4−8.95i)T+(7.39e3−2.82e3i)T2 |
| 97 | 1+(−42.0+12.6i)T+(7.84e3−5.19e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.31162445908612108978269784039, −9.877872035267367662087041050008, −8.938943309295486892860562217828, −7.64578771451439856780742070732, −6.88441287815151932080996932157, −6.05948536553145036947774555152, −5.08175980094882846412363444027, −2.82165042885668209236122151652, −2.39905451297708194830211085888, −1.35892269442789498086938730437,
1.56537090863694857887723635179, 3.72161178495491579433424815731, 4.69549536126449970307503666084, 5.34790858309710404545775134973, 6.11133561502563668333538864617, 7.30030093822099714110119102155, 8.675195508182321560236011677896, 9.588431767533309353676514376469, 10.43243539175299955314290584816, 10.55936861147465051880249087484