L(s) = 1 | + (−1.00 + 1.95i)2-s + (−0.109 − 0.998i)3-s + (−0.488 − 0.683i)4-s + (0.139 + 0.0654i)5-s + (2.06 + 0.789i)6-s + (−0.973 − 4.36i)7-s + (−6.87 + 1.01i)8-s + (7.80 − 1.73i)9-s + (−0.268 + 0.207i)10-s + (0.328 − 0.184i)11-s + (−0.628 + 0.563i)12-s + (−15.4 + 7.94i)13-s + (9.52 + 2.49i)14-s + (0.0499 − 0.146i)15-s + (6.02 − 17.6i)16-s + (−10.7 − 19.2i)17-s + ⋯ |
L(s) = 1 | + (−0.502 + 0.978i)2-s + (−0.0366 − 0.332i)3-s + (−0.122 − 0.170i)4-s + (0.0279 + 0.0130i)5-s + (0.343 + 0.131i)6-s + (−0.139 − 0.624i)7-s + (−0.859 + 0.126i)8-s + (0.866 − 0.193i)9-s + (−0.0268 + 0.0207i)10-s + (0.0298 − 0.0167i)11-s + (−0.0523 + 0.0469i)12-s + (−1.18 + 0.610i)13-s + (0.680 + 0.177i)14-s + (0.00333 − 0.00977i)15-s + (0.376 − 1.10i)16-s + (−0.634 − 1.13i)17-s + ⋯ |
Λ(s)=(=(431s/2ΓC(s)L(s)(0.203+0.979i)Λ(3−s)
Λ(s)=(=(431s/2ΓC(s+1)L(s)(0.203+0.979i)Λ(1−s)
Degree: |
2 |
Conductor: |
431
|
Sign: |
0.203+0.979i
|
Analytic conductor: |
11.7438 |
Root analytic conductor: |
3.42693 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ431(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 431, ( :1), 0.203+0.979i)
|
Particular Values
L(23) |
≈ |
0.395452−0.321616i |
L(21) |
≈ |
0.395452−0.321616i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 431 | 1+(409.−135.i)T |
good | 2 | 1+(1.00−1.95i)T+(−2.32−3.25i)T2 |
| 3 | 1+(0.109+0.998i)T+(−8.78+1.95i)T2 |
| 5 | 1+(−0.139−0.0654i)T+(15.9+19.2i)T2 |
| 7 | 1+(0.973+4.36i)T+(−44.3+20.7i)T2 |
| 11 | 1+(−0.328+0.184i)T+(63.0−103.i)T2 |
| 13 | 1+(15.4−7.94i)T+(98.3−137.i)T2 |
| 17 | 1+(10.7+19.2i)T+(−150.+246.i)T2 |
| 19 | 1+(6.11−2.86i)T+(230.−277.i)T2 |
| 23 | 1+(−4.13−4.28i)T+(−19.3+528.i)T2 |
| 29 | 1+(15.7−22.0i)T+(−271.−795.i)T2 |
| 31 | 1+(4.38+11.4i)T+(−715.+641.i)T2 |
| 37 | 1+(42.7+11.1i)T+(1.19e3+670.i)T2 |
| 41 | 1+(−20.0+58.7i)T+(−1.33e3−1.02e3i)T2 |
| 43 | 1+(4.87−6.31i)T+(−467.−1.78e3i)T2 |
| 47 | 1+(−2.11+28.8i)T+(−2.18e3−321.i)T2 |
| 53 | 1+(−23.4+1.71i)T+(2.77e3−408.i)T2 |
| 59 | 1+(3.51−6.84i)T+(−2.02e3−2.83e3i)T2 |
| 61 | 1+(6.56+15.4i)T+(−2.58e3+2.67e3i)T2 |
| 67 | 1+(66.9+17.5i)T+(3.91e3+2.19e3i)T2 |
| 71 | 1+(−7.50+102.i)T+(−4.98e3−733.i)T2 |
| 73 | 1+(−22.8−34.4i)T+(−2.08e3+4.90e3i)T2 |
| 79 | 1+(19.2−64.1i)T+(−5.20e3−3.44e3i)T2 |
| 83 | 1+(−5.65+0.622i)T+(6.72e3−1.49e3i)T2 |
| 89 | 1+(−127.+23.5i)T+(7.39e3−2.82e3i)T2 |
| 97 | 1+(−50.0+15.0i)T+(7.84e3−5.19e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53839809753073260860397683665, −9.574397163915111058335994954869, −8.901273086083343443372352018500, −7.56732057791266656991309270303, −7.17973739172435972433422834320, −6.48881891905290148071100692047, −5.14071591715299977418911914067, −3.89989794271644133914870236308, −2.24253153020675986458394053562, −0.24185149160479236502784151272,
1.65586474444848105417588684054, 2.71669069897598066124082091566, 4.04448012271663864374975054519, 5.31613112521306900405238206939, 6.40157838064940685907001945193, 7.62650783676322650776697101764, 8.799490099658081561809475842668, 9.586019737470834195050696386761, 10.25849551689229628731326429497, 10.92873232383269275278457047999