Properties

Label 2-431-431.430-c0-0-4
Degree $2$
Conductor $431$
Sign $1$
Analytic cond. $0.215097$
Root an. cond. $0.463785$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.24·2-s − 1.80·3-s + 0.554·4-s + 1.24·5-s − 2.24·6-s − 0.554·8-s + 2.24·9-s + 1.55·10-s + 2·11-s − 0.999·12-s − 2.24·15-s − 1.24·16-s + 2.80·18-s − 1.80·19-s + 0.692·20-s + 2.49·22-s − 0.445·23-s + 1.00·24-s + 0.554·25-s − 2.24·27-s − 0.445·29-s − 2.80·30-s − 0.999·32-s − 3.60·33-s + 1.24·36-s − 2.24·38-s − 0.692·40-s + ⋯
L(s)  = 1  + 1.24·2-s − 1.80·3-s + 0.554·4-s + 1.24·5-s − 2.24·6-s − 0.554·8-s + 2.24·9-s + 1.55·10-s + 2·11-s − 0.999·12-s − 2.24·15-s − 1.24·16-s + 2.80·18-s − 1.80·19-s + 0.692·20-s + 2.49·22-s − 0.445·23-s + 1.00·24-s + 0.554·25-s − 2.24·27-s − 0.445·29-s − 2.80·30-s − 0.999·32-s − 3.60·33-s + 1.24·36-s − 2.24·38-s − 0.692·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 431 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 431 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(431\)
Sign: $1$
Analytic conductor: \(0.215097\)
Root analytic conductor: \(0.463785\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{431} (430, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 431,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.072132799\)
\(L(\frac12)\) \(\approx\) \(1.072132799\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad431 \( 1 - T \)
good2 \( 1 - 1.24T + T^{2} \)
3 \( 1 + 1.80T + T^{2} \)
5 \( 1 - 1.24T + T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 - 2T + T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + 1.80T + T^{2} \)
23 \( 1 + 0.445T + T^{2} \)
29 \( 1 + 0.445T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + 0.445T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 + 1.80T + T^{2} \)
59 \( 1 - 1.24T + T^{2} \)
61 \( 1 + 1.80T + T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + 0.445T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.61321396543275839166813004970, −10.80695901122252835963209850005, −9.806850504849358835341516641413, −8.965703322197701109812993718759, −6.79738973199921560514862087173, −6.24798536474062340609840084125, −5.80794320174755592041415851401, −4.71072816950501530034895440899, −3.95465751271839231881092563948, −1.78247962675410925792230700719, 1.78247962675410925792230700719, 3.95465751271839231881092563948, 4.71072816950501530034895440899, 5.80794320174755592041415851401, 6.24798536474062340609840084125, 6.79738973199921560514862087173, 8.965703322197701109812993718759, 9.806850504849358835341516641413, 10.80695901122252835963209850005, 11.61321396543275839166813004970

Graph of the $Z$-function along the critical line