Properties

Label 2-4320-1.1-c1-0-22
Degree $2$
Conductor $4320$
Sign $1$
Analytic cond. $34.4953$
Root an. cond. $5.87327$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 0.732·7-s + 6.19·11-s − 1.26·13-s + 7.19·17-s + 5.73·19-s − 6.46·23-s + 25-s − 7.66·29-s + 1.19·31-s − 0.732·35-s − 0.535·37-s + 6.73·41-s + 6.73·43-s − 0.535·47-s − 6.46·49-s + 13.1·53-s − 6.19·55-s − 1.26·59-s − 1.92·61-s + 1.26·65-s − 12.9·67-s + 11.6·71-s − 10.1·73-s + 4.53·77-s − 10.1·79-s − 12.8·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.276·7-s + 1.86·11-s − 0.351·13-s + 1.74·17-s + 1.31·19-s − 1.34·23-s + 0.200·25-s − 1.42·29-s + 0.214·31-s − 0.123·35-s − 0.0881·37-s + 1.05·41-s + 1.02·43-s − 0.0781·47-s − 0.923·49-s + 1.81·53-s − 0.835·55-s − 0.165·59-s − 0.246·61-s + 0.157·65-s − 1.57·67-s + 1.38·71-s − 1.19·73-s + 0.516·77-s − 1.13·79-s − 1.41·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4320\)    =    \(2^{5} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(34.4953\)
Root analytic conductor: \(5.87327\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.202450197\)
\(L(\frac12)\) \(\approx\) \(2.202450197\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 0.732T + 7T^{2} \)
11 \( 1 - 6.19T + 11T^{2} \)
13 \( 1 + 1.26T + 13T^{2} \)
17 \( 1 - 7.19T + 17T^{2} \)
19 \( 1 - 5.73T + 19T^{2} \)
23 \( 1 + 6.46T + 23T^{2} \)
29 \( 1 + 7.66T + 29T^{2} \)
31 \( 1 - 1.19T + 31T^{2} \)
37 \( 1 + 0.535T + 37T^{2} \)
41 \( 1 - 6.73T + 41T^{2} \)
43 \( 1 - 6.73T + 43T^{2} \)
47 \( 1 + 0.535T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 + 1.26T + 59T^{2} \)
61 \( 1 + 1.92T + 61T^{2} \)
67 \( 1 + 12.9T + 67T^{2} \)
71 \( 1 - 11.6T + 71T^{2} \)
73 \( 1 + 10.1T + 73T^{2} \)
79 \( 1 + 10.1T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 - 3.80T + 89T^{2} \)
97 \( 1 + 5.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.313411948504778140037771297331, −7.48815167854089382611655641566, −7.21974591012469758035604950848, −5.99579134842451934810639287726, −5.62096192627481766165189793351, −4.45475829255172912710422734195, −3.81899516224035018542172005839, −3.13145604555847322077398472762, −1.76007827027691236860390905892, −0.900919006441812386359066305610, 0.900919006441812386359066305610, 1.76007827027691236860390905892, 3.13145604555847322077398472762, 3.81899516224035018542172005839, 4.45475829255172912710422734195, 5.62096192627481766165189793351, 5.99579134842451934810639287726, 7.21974591012469758035604950848, 7.48815167854089382611655641566, 8.313411948504778140037771297331

Graph of the $Z$-function along the critical line