Properties

Label 2-4320-1.1-c1-0-52
Degree $2$
Conductor $4320$
Sign $-1$
Analytic cond. $34.4953$
Root an. cond. $5.87327$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2.73·7-s + 4.19·11-s − 4.73·13-s + 3.19·17-s + 2.26·19-s − 0.464·23-s + 25-s − 9.66·29-s − 9.19·31-s − 2.73·35-s − 7.46·37-s − 3.26·41-s + 3.26·43-s + 7.46·47-s + 0.464·49-s − 2.80·53-s + 4.19·55-s + 4.73·59-s + 11.9·61-s − 4.73·65-s + 0.928·67-s + 5.66·71-s + 0.196·73-s − 11.4·77-s + 14.1·79-s − 14.8·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.03·7-s + 1.26·11-s − 1.31·13-s + 0.775·17-s + 0.520·19-s − 0.0967·23-s + 0.200·25-s − 1.79·29-s − 1.65·31-s − 0.461·35-s − 1.22·37-s − 0.510·41-s + 0.498·43-s + 1.08·47-s + 0.0663·49-s − 0.385·53-s + 0.565·55-s + 0.616·59-s + 1.52·61-s − 0.586·65-s + 0.113·67-s + 0.671·71-s + 0.0229·73-s − 1.30·77-s + 1.58·79-s − 1.63·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4320\)    =    \(2^{5} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(34.4953\)
Root analytic conductor: \(5.87327\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 2.73T + 7T^{2} \)
11 \( 1 - 4.19T + 11T^{2} \)
13 \( 1 + 4.73T + 13T^{2} \)
17 \( 1 - 3.19T + 17T^{2} \)
19 \( 1 - 2.26T + 19T^{2} \)
23 \( 1 + 0.464T + 23T^{2} \)
29 \( 1 + 9.66T + 29T^{2} \)
31 \( 1 + 9.19T + 31T^{2} \)
37 \( 1 + 7.46T + 37T^{2} \)
41 \( 1 + 3.26T + 41T^{2} \)
43 \( 1 - 3.26T + 43T^{2} \)
47 \( 1 - 7.46T + 47T^{2} \)
53 \( 1 + 2.80T + 53T^{2} \)
59 \( 1 - 4.73T + 59T^{2} \)
61 \( 1 - 11.9T + 61T^{2} \)
67 \( 1 - 0.928T + 67T^{2} \)
71 \( 1 - 5.66T + 71T^{2} \)
73 \( 1 - 0.196T + 73T^{2} \)
79 \( 1 - 14.1T + 79T^{2} \)
83 \( 1 + 14.8T + 83T^{2} \)
89 \( 1 + 14.1T + 89T^{2} \)
97 \( 1 - 1.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.921241425092311591720054153332, −7.01466699710500967991293185219, −6.81605679435334625598929201639, −5.60293322024917231365789628723, −5.36572754146350749244203889348, −3.98452354267102359517795246236, −3.48885521211283544508025469288, −2.44077145671352364575613625238, −1.45193648404109700889204593146, 0, 1.45193648404109700889204593146, 2.44077145671352364575613625238, 3.48885521211283544508025469288, 3.98452354267102359517795246236, 5.36572754146350749244203889348, 5.60293322024917231365789628723, 6.81605679435334625598929201639, 7.01466699710500967991293185219, 7.921241425092311591720054153332

Graph of the $Z$-function along the critical line