Properties

Label 2-4320-40.29-c1-0-72
Degree $2$
Conductor $4320$
Sign $0.498 + 0.867i$
Analytic cond. $34.4953$
Root an. cond. $5.87327$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.463 + 2.18i)5-s + 3.14i·7-s − 2.42i·11-s + 3.12·13-s − 7.15i·17-s − 2.34i·19-s − 1.28i·23-s + (−4.57 − 2.02i)25-s − 4.21i·29-s − 3.05·31-s + (−6.89 − 1.45i)35-s − 1.37·37-s + 11.0·41-s − 9.70·43-s − 0.627i·47-s + ⋯
L(s)  = 1  + (−0.207 + 0.978i)5-s + 1.19i·7-s − 0.730i·11-s + 0.866·13-s − 1.73i·17-s − 0.538i·19-s − 0.268i·23-s + (−0.914 − 0.405i)25-s − 0.782i·29-s − 0.549·31-s + (−1.16 − 0.246i)35-s − 0.225·37-s + 1.72·41-s − 1.47·43-s − 0.0915i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.498 + 0.867i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.498 + 0.867i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4320\)    =    \(2^{5} \cdot 3^{3} \cdot 5\)
Sign: $0.498 + 0.867i$
Analytic conductor: \(34.4953\)
Root analytic conductor: \(5.87327\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4320} (3889, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4320,\ (\ :1/2),\ 0.498 + 0.867i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.245203381\)
\(L(\frac12)\) \(\approx\) \(1.245203381\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (0.463 - 2.18i)T \)
good7 \( 1 - 3.14iT - 7T^{2} \)
11 \( 1 + 2.42iT - 11T^{2} \)
13 \( 1 - 3.12T + 13T^{2} \)
17 \( 1 + 7.15iT - 17T^{2} \)
19 \( 1 + 2.34iT - 19T^{2} \)
23 \( 1 + 1.28iT - 23T^{2} \)
29 \( 1 + 4.21iT - 29T^{2} \)
31 \( 1 + 3.05T + 31T^{2} \)
37 \( 1 + 1.37T + 37T^{2} \)
41 \( 1 - 11.0T + 41T^{2} \)
43 \( 1 + 9.70T + 43T^{2} \)
47 \( 1 + 0.627iT - 47T^{2} \)
53 \( 1 + 9.54T + 53T^{2} \)
59 \( 1 + 10.1iT - 59T^{2} \)
61 \( 1 + 12.7iT - 61T^{2} \)
67 \( 1 + 10.5T + 67T^{2} \)
71 \( 1 + 7.38T + 71T^{2} \)
73 \( 1 + 5.73iT - 73T^{2} \)
79 \( 1 + 11.2T + 79T^{2} \)
83 \( 1 - 3.12T + 83T^{2} \)
89 \( 1 - 15.9T + 89T^{2} \)
97 \( 1 - 14.6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.207351395827349943149808728702, −7.58401419277261703262235465076, −6.66750361640006629348069286872, −6.14010778322013760542836690655, −5.41977188924641240537574834261, −4.53882319955425640483124412398, −3.35089784297519262229814562180, −2.89627571560254719990371712938, −2.00087564329962644041241992455, −0.36840820913605070629686888001, 1.18461472018707545863954027498, 1.71272937899862618183798961694, 3.36909914296491241335454253064, 4.09311767996007059694288021151, 4.50513000073318467049198457113, 5.60971957404238509470759974754, 6.21694033598886159504813954938, 7.24521484907559934080439193053, 7.73445985203117401315272976454, 8.525532012760756171855633330567

Graph of the $Z$-function along the critical line