Properties

Label 2-435-1.1-c3-0-14
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.40·2-s − 3·3-s − 6.01·4-s + 5·5-s − 4.22·6-s + 22.4·7-s − 19.7·8-s + 9·9-s + 7.04·10-s + 11.9·11-s + 18.0·12-s − 24.3·13-s + 31.5·14-s − 15·15-s + 20.2·16-s − 57.0·17-s + 12.6·18-s − 101.·19-s − 30.0·20-s − 67.2·21-s + 16.8·22-s + 133.·23-s + 59.2·24-s + 25·25-s − 34.3·26-s − 27·27-s − 134.·28-s + ⋯
L(s)  = 1  + 0.498·2-s − 0.577·3-s − 0.751·4-s + 0.447·5-s − 0.287·6-s + 1.21·7-s − 0.872·8-s + 0.333·9-s + 0.222·10-s + 0.327·11-s + 0.434·12-s − 0.520·13-s + 0.602·14-s − 0.258·15-s + 0.317·16-s − 0.814·17-s + 0.166·18-s − 1.22·19-s − 0.336·20-s − 0.698·21-s + 0.163·22-s + 1.20·23-s + 0.503·24-s + 0.200·25-s − 0.259·26-s − 0.192·27-s − 0.909·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.918550850\)
\(L(\frac12)\) \(\approx\) \(1.918550850\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 - 5T \)
29 \( 1 - 29T \)
good2 \( 1 - 1.40T + 8T^{2} \)
7 \( 1 - 22.4T + 343T^{2} \)
11 \( 1 - 11.9T + 1.33e3T^{2} \)
13 \( 1 + 24.3T + 2.19e3T^{2} \)
17 \( 1 + 57.0T + 4.91e3T^{2} \)
19 \( 1 + 101.T + 6.85e3T^{2} \)
23 \( 1 - 133.T + 1.21e4T^{2} \)
31 \( 1 - 292.T + 2.97e4T^{2} \)
37 \( 1 - 393.T + 5.06e4T^{2} \)
41 \( 1 - 237.T + 6.89e4T^{2} \)
43 \( 1 + 82.3T + 7.95e4T^{2} \)
47 \( 1 - 490.T + 1.03e5T^{2} \)
53 \( 1 + 416.T + 1.48e5T^{2} \)
59 \( 1 - 320.T + 2.05e5T^{2} \)
61 \( 1 - 612.T + 2.26e5T^{2} \)
67 \( 1 - 569.T + 3.00e5T^{2} \)
71 \( 1 + 689.T + 3.57e5T^{2} \)
73 \( 1 - 125.T + 3.89e5T^{2} \)
79 \( 1 + 356.T + 4.93e5T^{2} \)
83 \( 1 - 947.T + 5.71e5T^{2} \)
89 \( 1 + 1.21e3T + 7.04e5T^{2} \)
97 \( 1 + 597.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90105425819941109377575027626, −9.849260834025950715096617286944, −8.909804316935680525189515357544, −8.095981467397186707971108894432, −6.74243392330184941112889953837, −5.79396820707187029202082573448, −4.74269334162501638398106232719, −4.32976011783828265162166917631, −2.47698213947610411168312872873, −0.880889658107417387830054797693, 0.880889658107417387830054797693, 2.47698213947610411168312872873, 4.32976011783828265162166917631, 4.74269334162501638398106232719, 5.79396820707187029202082573448, 6.74243392330184941112889953837, 8.095981467397186707971108894432, 8.909804316935680525189515357544, 9.849260834025950715096617286944, 10.90105425819941109377575027626

Graph of the $Z$-function along the critical line