L(s) = 1 | + 1.40·2-s − 3·3-s − 6.01·4-s + 5·5-s − 4.22·6-s + 22.4·7-s − 19.7·8-s + 9·9-s + 7.04·10-s + 11.9·11-s + 18.0·12-s − 24.3·13-s + 31.5·14-s − 15·15-s + 20.2·16-s − 57.0·17-s + 12.6·18-s − 101.·19-s − 30.0·20-s − 67.2·21-s + 16.8·22-s + 133.·23-s + 59.2·24-s + 25·25-s − 34.3·26-s − 27·27-s − 134.·28-s + ⋯ |
L(s) = 1 | + 0.498·2-s − 0.577·3-s − 0.751·4-s + 0.447·5-s − 0.287·6-s + 1.21·7-s − 0.872·8-s + 0.333·9-s + 0.222·10-s + 0.327·11-s + 0.434·12-s − 0.520·13-s + 0.602·14-s − 0.258·15-s + 0.317·16-s − 0.814·17-s + 0.166·18-s − 1.22·19-s − 0.336·20-s − 0.698·21-s + 0.163·22-s + 1.20·23-s + 0.503·24-s + 0.200·25-s − 0.259·26-s − 0.192·27-s − 0.909·28-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(435s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.918550850 |
L(21) |
≈ |
1.918550850 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1−5T |
| 29 | 1−29T |
good | 2 | 1−1.40T+8T2 |
| 7 | 1−22.4T+343T2 |
| 11 | 1−11.9T+1.33e3T2 |
| 13 | 1+24.3T+2.19e3T2 |
| 17 | 1+57.0T+4.91e3T2 |
| 19 | 1+101.T+6.85e3T2 |
| 23 | 1−133.T+1.21e4T2 |
| 31 | 1−292.T+2.97e4T2 |
| 37 | 1−393.T+5.06e4T2 |
| 41 | 1−237.T+6.89e4T2 |
| 43 | 1+82.3T+7.95e4T2 |
| 47 | 1−490.T+1.03e5T2 |
| 53 | 1+416.T+1.48e5T2 |
| 59 | 1−320.T+2.05e5T2 |
| 61 | 1−612.T+2.26e5T2 |
| 67 | 1−569.T+3.00e5T2 |
| 71 | 1+689.T+3.57e5T2 |
| 73 | 1−125.T+3.89e5T2 |
| 79 | 1+356.T+4.93e5T2 |
| 83 | 1−947.T+5.71e5T2 |
| 89 | 1+1.21e3T+7.04e5T2 |
| 97 | 1+597.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90105425819941109377575027626, −9.849260834025950715096617286944, −8.909804316935680525189515357544, −8.095981467397186707971108894432, −6.74243392330184941112889953837, −5.79396820707187029202082573448, −4.74269334162501638398106232719, −4.32976011783828265162166917631, −2.47698213947610411168312872873, −0.880889658107417387830054797693,
0.880889658107417387830054797693, 2.47698213947610411168312872873, 4.32976011783828265162166917631, 4.74269334162501638398106232719, 5.79396820707187029202082573448, 6.74243392330184941112889953837, 8.095981467397186707971108894432, 8.909804316935680525189515357544, 9.849260834025950715096617286944, 10.90105425819941109377575027626