L(s) = 1 | + 0.529·2-s + 3·3-s − 7.71·4-s + 5·5-s + 1.58·6-s + 30.0·7-s − 8.32·8-s + 9·9-s + 2.64·10-s + 11.5·11-s − 23.1·12-s − 64.3·13-s + 15.9·14-s + 15·15-s + 57.3·16-s + 29.8·17-s + 4.76·18-s + 103.·19-s − 38.5·20-s + 90.2·21-s + 6.12·22-s − 29.0·23-s − 24.9·24-s + 25·25-s − 34.0·26-s + 27·27-s − 232.·28-s + ⋯ |
L(s) = 1 | + 0.187·2-s + 0.577·3-s − 0.964·4-s + 0.447·5-s + 0.108·6-s + 1.62·7-s − 0.367·8-s + 0.333·9-s + 0.0837·10-s + 0.317·11-s − 0.557·12-s − 1.37·13-s + 0.304·14-s + 0.258·15-s + 0.896·16-s + 0.426·17-s + 0.0624·18-s + 1.24·19-s − 0.431·20-s + 0.937·21-s + 0.0593·22-s − 0.263·23-s − 0.212·24-s + 0.200·25-s − 0.257·26-s + 0.192·27-s − 1.56·28-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(435s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.724223060 |
L(21) |
≈ |
2.724223060 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1−5T |
| 29 | 1+29T |
good | 2 | 1−0.529T+8T2 |
| 7 | 1−30.0T+343T2 |
| 11 | 1−11.5T+1.33e3T2 |
| 13 | 1+64.3T+2.19e3T2 |
| 17 | 1−29.8T+4.91e3T2 |
| 19 | 1−103.T+6.85e3T2 |
| 23 | 1+29.0T+1.21e4T2 |
| 31 | 1+44.7T+2.97e4T2 |
| 37 | 1−21.8T+5.06e4T2 |
| 41 | 1−35.0T+6.89e4T2 |
| 43 | 1−367.T+7.95e4T2 |
| 47 | 1−504.T+1.03e5T2 |
| 53 | 1−290.T+1.48e5T2 |
| 59 | 1−168.T+2.05e5T2 |
| 61 | 1+287.T+2.26e5T2 |
| 67 | 1−388.T+3.00e5T2 |
| 71 | 1−337.T+3.57e5T2 |
| 73 | 1+487.T+3.89e5T2 |
| 79 | 1−625.T+4.93e5T2 |
| 83 | 1−747.T+5.71e5T2 |
| 89 | 1+205.T+7.04e5T2 |
| 97 | 1+1.08e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57332805094497608685072651851, −9.618239565442778688380682482095, −9.009451725558400980641770977491, −7.963764304028980761829979869051, −7.37293294718435019986943380447, −5.57565102745898495928118912989, −4.92462915062139852645189310350, −3.95257316214826927749233417066, −2.45498459206126874728474010141, −1.10141587077213584111898626252,
1.10141587077213584111898626252, 2.45498459206126874728474010141, 3.95257316214826927749233417066, 4.92462915062139852645189310350, 5.57565102745898495928118912989, 7.37293294718435019986943380447, 7.963764304028980761829979869051, 9.009451725558400980641770977491, 9.618239565442778688380682482095, 10.57332805094497608685072651851