L(s) = 1 | − 4.76·2-s − 3·3-s + 14.6·4-s − 5·5-s + 14.2·6-s + 35.2·7-s − 31.8·8-s + 9·9-s + 23.8·10-s − 41.1·11-s − 44.0·12-s − 79.0·13-s − 167.·14-s + 15·15-s + 34.1·16-s + 27.4·17-s − 42.8·18-s + 142.·19-s − 73.4·20-s − 105.·21-s + 196.·22-s − 125.·23-s + 95.4·24-s + 25·25-s + 376.·26-s − 27·27-s + 517.·28-s + ⋯ |
L(s) = 1 | − 1.68·2-s − 0.577·3-s + 1.83·4-s − 0.447·5-s + 0.972·6-s + 1.90·7-s − 1.40·8-s + 0.333·9-s + 0.753·10-s − 1.12·11-s − 1.05·12-s − 1.68·13-s − 3.20·14-s + 0.258·15-s + 0.533·16-s + 0.391·17-s − 0.561·18-s + 1.72·19-s − 0.820·20-s − 1.09·21-s + 1.89·22-s − 1.13·23-s + 0.812·24-s + 0.200·25-s + 2.83·26-s − 0.192·27-s + 3.49·28-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(435s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1+5T |
| 29 | 1−29T |
good | 2 | 1+4.76T+8T2 |
| 7 | 1−35.2T+343T2 |
| 11 | 1+41.1T+1.33e3T2 |
| 13 | 1+79.0T+2.19e3T2 |
| 17 | 1−27.4T+4.91e3T2 |
| 19 | 1−142.T+6.85e3T2 |
| 23 | 1+125.T+1.21e4T2 |
| 31 | 1−63.9T+2.97e4T2 |
| 37 | 1+39.2T+5.06e4T2 |
| 41 | 1−385.T+6.89e4T2 |
| 43 | 1+534.T+7.95e4T2 |
| 47 | 1−212.T+1.03e5T2 |
| 53 | 1+505.T+1.48e5T2 |
| 59 | 1+184.T+2.05e5T2 |
| 61 | 1+56.9T+2.26e5T2 |
| 67 | 1−313.T+3.00e5T2 |
| 71 | 1+163.T+3.57e5T2 |
| 73 | 1−695.T+3.89e5T2 |
| 79 | 1+1.09e3T+4.93e5T2 |
| 83 | 1+571.T+5.71e5T2 |
| 89 | 1−1.38e3T+7.04e5T2 |
| 97 | 1+573.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22194392280061065018941467545, −9.513348498867647610739672898011, −8.094729364441957749078802615091, −7.83421917774038893596698102036, −7.15928592817148718621916201143, −5.43137721193709529404816428607, −4.69255868965361302978212719829, −2.49340377944610569412060072768, −1.29947420673431791649719015475, 0,
1.29947420673431791649719015475, 2.49340377944610569412060072768, 4.69255868965361302978212719829, 5.43137721193709529404816428607, 7.15928592817148718621916201143, 7.83421917774038893596698102036, 8.094729364441957749078802615091, 9.513348498867647610739672898011, 10.22194392280061065018941467545