Properties

Label 2-435-1.1-c3-0-28
Degree $2$
Conductor $435$
Sign $-1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.76·2-s − 3·3-s + 14.6·4-s − 5·5-s + 14.2·6-s + 35.2·7-s − 31.8·8-s + 9·9-s + 23.8·10-s − 41.1·11-s − 44.0·12-s − 79.0·13-s − 167.·14-s + 15·15-s + 34.1·16-s + 27.4·17-s − 42.8·18-s + 142.·19-s − 73.4·20-s − 105.·21-s + 196.·22-s − 125.·23-s + 95.4·24-s + 25·25-s + 376.·26-s − 27·27-s + 517.·28-s + ⋯
L(s)  = 1  − 1.68·2-s − 0.577·3-s + 1.83·4-s − 0.447·5-s + 0.972·6-s + 1.90·7-s − 1.40·8-s + 0.333·9-s + 0.753·10-s − 1.12·11-s − 1.05·12-s − 1.68·13-s − 3.20·14-s + 0.258·15-s + 0.533·16-s + 0.391·17-s − 0.561·18-s + 1.72·19-s − 0.820·20-s − 1.09·21-s + 1.89·22-s − 1.13·23-s + 0.812·24-s + 0.200·25-s + 2.83·26-s − 0.192·27-s + 3.49·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 + 5T \)
29 \( 1 - 29T \)
good2 \( 1 + 4.76T + 8T^{2} \)
7 \( 1 - 35.2T + 343T^{2} \)
11 \( 1 + 41.1T + 1.33e3T^{2} \)
13 \( 1 + 79.0T + 2.19e3T^{2} \)
17 \( 1 - 27.4T + 4.91e3T^{2} \)
19 \( 1 - 142.T + 6.85e3T^{2} \)
23 \( 1 + 125.T + 1.21e4T^{2} \)
31 \( 1 - 63.9T + 2.97e4T^{2} \)
37 \( 1 + 39.2T + 5.06e4T^{2} \)
41 \( 1 - 385.T + 6.89e4T^{2} \)
43 \( 1 + 534.T + 7.95e4T^{2} \)
47 \( 1 - 212.T + 1.03e5T^{2} \)
53 \( 1 + 505.T + 1.48e5T^{2} \)
59 \( 1 + 184.T + 2.05e5T^{2} \)
61 \( 1 + 56.9T + 2.26e5T^{2} \)
67 \( 1 - 313.T + 3.00e5T^{2} \)
71 \( 1 + 163.T + 3.57e5T^{2} \)
73 \( 1 - 695.T + 3.89e5T^{2} \)
79 \( 1 + 1.09e3T + 4.93e5T^{2} \)
83 \( 1 + 571.T + 5.71e5T^{2} \)
89 \( 1 - 1.38e3T + 7.04e5T^{2} \)
97 \( 1 + 573.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22194392280061065018941467545, −9.513348498867647610739672898011, −8.094729364441957749078802615091, −7.83421917774038893596698102036, −7.15928592817148718621916201143, −5.43137721193709529404816428607, −4.69255868965361302978212719829, −2.49340377944610569412060072768, −1.29947420673431791649719015475, 0, 1.29947420673431791649719015475, 2.49340377944610569412060072768, 4.69255868965361302978212719829, 5.43137721193709529404816428607, 7.15928592817148718621916201143, 7.83421917774038893596698102036, 8.094729364441957749078802615091, 9.513348498867647610739672898011, 10.22194392280061065018941467545

Graph of the $Z$-function along the critical line