Properties

Label 2-435-1.1-c3-0-46
Degree $2$
Conductor $435$
Sign $-1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s − 7·4-s + 5·5-s − 3·6-s + 4·7-s + 15·8-s + 9·9-s − 5·10-s − 36·11-s − 21·12-s − 22·13-s − 4·14-s + 15·15-s + 41·16-s − 2·17-s − 9·18-s − 56·19-s − 35·20-s + 12·21-s + 36·22-s − 40·23-s + 45·24-s + 25·25-s + 22·26-s + 27·27-s − 28·28-s + ⋯
L(s)  = 1  − 0.353·2-s + 0.577·3-s − 7/8·4-s + 0.447·5-s − 0.204·6-s + 0.215·7-s + 0.662·8-s + 1/3·9-s − 0.158·10-s − 0.986·11-s − 0.505·12-s − 0.469·13-s − 0.0763·14-s + 0.258·15-s + 0.640·16-s − 0.0285·17-s − 0.117·18-s − 0.676·19-s − 0.391·20-s + 0.124·21-s + 0.348·22-s − 0.362·23-s + 0.382·24-s + 1/5·25-s + 0.165·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 - p T \)
29 \( 1 - p T \)
good2 \( 1 + T + p^{3} T^{2} \)
7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 + 22 T + p^{3} T^{2} \)
17 \( 1 + 2 T + p^{3} T^{2} \)
19 \( 1 + 56 T + p^{3} T^{2} \)
23 \( 1 + 40 T + p^{3} T^{2} \)
31 \( 1 - 152 T + p^{3} T^{2} \)
37 \( 1 - 34 T + p^{3} T^{2} \)
41 \( 1 + 250 T + p^{3} T^{2} \)
43 \( 1 + 412 T + p^{3} T^{2} \)
47 \( 1 + 120 T + p^{3} T^{2} \)
53 \( 1 + 762 T + p^{3} T^{2} \)
59 \( 1 + 188 T + p^{3} T^{2} \)
61 \( 1 + 54 T + p^{3} T^{2} \)
67 \( 1 + 244 T + p^{3} T^{2} \)
71 \( 1 - 600 T + p^{3} T^{2} \)
73 \( 1 - 6 T + p^{3} T^{2} \)
79 \( 1 + 640 T + p^{3} T^{2} \)
83 \( 1 - 8 p T + p^{3} T^{2} \)
89 \( 1 - 150 T + p^{3} T^{2} \)
97 \( 1 + 1690 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03337444848525061151970572573, −9.453757669856857417113204759096, −8.323091959849150548058122240642, −7.959638156522876811417947654592, −6.62038039851849601214079969333, −5.24153362785041470946393272646, −4.47289470116913976637026712426, −3.05582687556138009517029285414, −1.71359044527595527357752911774, 0, 1.71359044527595527357752911774, 3.05582687556138009517029285414, 4.47289470116913976637026712426, 5.24153362785041470946393272646, 6.62038039851849601214079969333, 7.959638156522876811417947654592, 8.323091959849150548058122240642, 9.453757669856857417113204759096, 10.03337444848525061151970572573

Graph of the $Z$-function along the critical line