L(s) = 1 | − 2-s + 3·3-s − 7·4-s + 5·5-s − 3·6-s + 4·7-s + 15·8-s + 9·9-s − 5·10-s − 36·11-s − 21·12-s − 22·13-s − 4·14-s + 15·15-s + 41·16-s − 2·17-s − 9·18-s − 56·19-s − 35·20-s + 12·21-s + 36·22-s − 40·23-s + 45·24-s + 25·25-s + 22·26-s + 27·27-s − 28·28-s + ⋯ |
L(s) = 1 | − 0.353·2-s + 0.577·3-s − 7/8·4-s + 0.447·5-s − 0.204·6-s + 0.215·7-s + 0.662·8-s + 1/3·9-s − 0.158·10-s − 0.986·11-s − 0.505·12-s − 0.469·13-s − 0.0763·14-s + 0.258·15-s + 0.640·16-s − 0.0285·17-s − 0.117·18-s − 0.676·19-s − 0.391·20-s + 0.124·21-s + 0.348·22-s − 0.362·23-s + 0.382·24-s + 1/5·25-s + 0.165·26-s + 0.192·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(435s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−pT |
| 5 | 1−pT |
| 29 | 1−pT |
good | 2 | 1+T+p3T2 |
| 7 | 1−4T+p3T2 |
| 11 | 1+36T+p3T2 |
| 13 | 1+22T+p3T2 |
| 17 | 1+2T+p3T2 |
| 19 | 1+56T+p3T2 |
| 23 | 1+40T+p3T2 |
| 31 | 1−152T+p3T2 |
| 37 | 1−34T+p3T2 |
| 41 | 1+250T+p3T2 |
| 43 | 1+412T+p3T2 |
| 47 | 1+120T+p3T2 |
| 53 | 1+762T+p3T2 |
| 59 | 1+188T+p3T2 |
| 61 | 1+54T+p3T2 |
| 67 | 1+244T+p3T2 |
| 71 | 1−600T+p3T2 |
| 73 | 1−6T+p3T2 |
| 79 | 1+640T+p3T2 |
| 83 | 1−8pT+p3T2 |
| 89 | 1−150T+p3T2 |
| 97 | 1+1690T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03337444848525061151970572573, −9.453757669856857417113204759096, −8.323091959849150548058122240642, −7.959638156522876811417947654592, −6.62038039851849601214079969333, −5.24153362785041470946393272646, −4.47289470116913976637026712426, −3.05582687556138009517029285414, −1.71359044527595527357752911774, 0,
1.71359044527595527357752911774, 3.05582687556138009517029285414, 4.47289470116913976637026712426, 5.24153362785041470946393272646, 6.62038039851849601214079969333, 7.959638156522876811417947654592, 8.323091959849150548058122240642, 9.453757669856857417113204759096, 10.03337444848525061151970572573