L(s) = 1 | + 4.42·2-s − 3·3-s + 11.6·4-s − 5·5-s − 13.2·6-s − 2.85·7-s + 15.9·8-s + 9·9-s − 22.1·10-s + 6.18·11-s − 34.8·12-s − 56.2·13-s − 12.6·14-s + 15·15-s − 22.2·16-s − 46.4·17-s + 39.8·18-s − 156.·19-s − 58.0·20-s + 8.56·21-s + 27.3·22-s + 154.·23-s − 47.8·24-s + 25·25-s − 249.·26-s − 27·27-s − 33.1·28-s + ⋯ |
L(s) = 1 | + 1.56·2-s − 0.577·3-s + 1.45·4-s − 0.447·5-s − 0.903·6-s − 0.154·7-s + 0.704·8-s + 0.333·9-s − 0.700·10-s + 0.169·11-s − 0.837·12-s − 1.20·13-s − 0.241·14-s + 0.258·15-s − 0.347·16-s − 0.663·17-s + 0.521·18-s − 1.88·19-s − 0.648·20-s + 0.0889·21-s + 0.265·22-s + 1.40·23-s − 0.406·24-s + 0.200·25-s − 1.87·26-s − 0.192·27-s − 0.223·28-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(435s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1+5T |
| 29 | 1−29T |
good | 2 | 1−4.42T+8T2 |
| 7 | 1+2.85T+343T2 |
| 11 | 1−6.18T+1.33e3T2 |
| 13 | 1+56.2T+2.19e3T2 |
| 17 | 1+46.4T+4.91e3T2 |
| 19 | 1+156.T+6.85e3T2 |
| 23 | 1−154.T+1.21e4T2 |
| 31 | 1−29.4T+2.97e4T2 |
| 37 | 1+45.2T+5.06e4T2 |
| 41 | 1+61.9T+6.89e4T2 |
| 43 | 1+378.T+7.95e4T2 |
| 47 | 1+488.T+1.03e5T2 |
| 53 | 1−77.0T+1.48e5T2 |
| 59 | 1+770.T+2.05e5T2 |
| 61 | 1−598.T+2.26e5T2 |
| 67 | 1−500.T+3.00e5T2 |
| 71 | 1−1.04e3T+3.57e5T2 |
| 73 | 1−790.T+3.89e5T2 |
| 79 | 1−1.03e3T+4.93e5T2 |
| 83 | 1+308.T+5.71e5T2 |
| 89 | 1−336.T+7.04e5T2 |
| 97 | 1+590.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.77487000215626732074046570962, −9.521842931072664569131563623075, −8.271399650551271228569403527726, −6.81847376259381468660484553122, −6.51789751958666533661370241258, −5.07694692134468644649625515065, −4.62160497518057498119575018904, −3.48150455760780017226686027191, −2.21877362611530292879105166749, 0,
2.21877362611530292879105166749, 3.48150455760780017226686027191, 4.62160497518057498119575018904, 5.07694692134468644649625515065, 6.51789751958666533661370241258, 6.81847376259381468660484553122, 8.271399650551271228569403527726, 9.521842931072664569131563623075, 10.77487000215626732074046570962