Properties

Label 2-4368-1.1-c1-0-0
Degree $2$
Conductor $4368$
Sign $1$
Analytic cond. $34.8786$
Root an. cond. $5.90581$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2.37·5-s − 7-s + 9-s − 2·11-s − 13-s + 2.37·15-s − 6.37·19-s + 21-s − 4.37·23-s + 0.627·25-s − 27-s − 4.37·29-s − 2.37·31-s + 2·33-s + 2.37·35-s + 6.74·37-s + 39-s + 8.74·41-s − 11.1·43-s − 2.37·45-s + 6.37·47-s + 49-s − 0.372·53-s + 4.74·55-s + 6.37·57-s + 8·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.06·5-s − 0.377·7-s + 0.333·9-s − 0.603·11-s − 0.277·13-s + 0.612·15-s − 1.46·19-s + 0.218·21-s − 0.911·23-s + 0.125·25-s − 0.192·27-s − 0.811·29-s − 0.426·31-s + 0.348·33-s + 0.400·35-s + 1.10·37-s + 0.160·39-s + 1.36·41-s − 1.69·43-s − 0.353·45-s + 0.929·47-s + 0.142·49-s − 0.0511·53-s + 0.639·55-s + 0.844·57-s + 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4368\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(34.8786\)
Root analytic conductor: \(5.90581\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4368,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4370465317\)
\(L(\frac12)\) \(\approx\) \(0.4370465317\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + 2.37T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 6.37T + 19T^{2} \)
23 \( 1 + 4.37T + 23T^{2} \)
29 \( 1 + 4.37T + 29T^{2} \)
31 \( 1 + 2.37T + 31T^{2} \)
37 \( 1 - 6.74T + 37T^{2} \)
41 \( 1 - 8.74T + 41T^{2} \)
43 \( 1 + 11.1T + 43T^{2} \)
47 \( 1 - 6.37T + 47T^{2} \)
53 \( 1 + 0.372T + 53T^{2} \)
59 \( 1 - 8T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 12.7T + 67T^{2} \)
71 \( 1 + 2.74T + 71T^{2} \)
73 \( 1 + 13.8T + 73T^{2} \)
79 \( 1 + 11.1T + 79T^{2} \)
83 \( 1 + 11.1T + 83T^{2} \)
89 \( 1 + 1.62T + 89T^{2} \)
97 \( 1 - 11.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.249473605685829877364603480190, −7.59357320273006210296343134822, −7.01811843996224926472045534946, −6.09190148526156743915440064587, −5.54123113914894278657470887588, −4.36339911723814671209082687899, −4.09777281569580816708423624964, −2.97842774283939190974358528708, −1.94224996286917475886429854434, −0.36409580788311828761240336846, 0.36409580788311828761240336846, 1.94224996286917475886429854434, 2.97842774283939190974358528708, 4.09777281569580816708423624964, 4.36339911723814671209082687899, 5.54123113914894278657470887588, 6.09190148526156743915440064587, 7.01811843996224926472045534946, 7.59357320273006210296343134822, 8.249473605685829877364603480190

Graph of the $Z$-function along the critical line