L(s) = 1 | + 3-s + 2.56·5-s − 7-s + 9-s + 2·11-s − 13-s + 2.56·15-s − 3.12·17-s + 6.56·19-s − 21-s + 7.68·23-s + 1.56·25-s + 27-s + 0.561·29-s + 2.56·31-s + 2·33-s − 2.56·35-s − 7.12·37-s − 39-s − 1.12·41-s + 5.43·43-s + 2.56·45-s − 5.68·47-s + 49-s − 3.12·51-s + 4.56·53-s + 5.12·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.14·5-s − 0.377·7-s + 0.333·9-s + 0.603·11-s − 0.277·13-s + 0.661·15-s − 0.757·17-s + 1.50·19-s − 0.218·21-s + 1.60·23-s + 0.312·25-s + 0.192·27-s + 0.104·29-s + 0.460·31-s + 0.348·33-s − 0.432·35-s − 1.17·37-s − 0.160·39-s − 0.175·41-s + 0.829·43-s + 0.381·45-s − 0.829·47-s + 0.142·49-s − 0.437·51-s + 0.626·53-s + 0.690·55-s + ⋯ |
Λ(s)=(=(4368s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4368s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.192432307 |
L(21) |
≈ |
3.192432307 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1+T |
| 13 | 1+T |
good | 5 | 1−2.56T+5T2 |
| 11 | 1−2T+11T2 |
| 17 | 1+3.12T+17T2 |
| 19 | 1−6.56T+19T2 |
| 23 | 1−7.68T+23T2 |
| 29 | 1−0.561T+29T2 |
| 31 | 1−2.56T+31T2 |
| 37 | 1+7.12T+37T2 |
| 41 | 1+1.12T+41T2 |
| 43 | 1−5.43T+43T2 |
| 47 | 1+5.68T+47T2 |
| 53 | 1−4.56T+53T2 |
| 59 | 1−3.12T+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1+11.3T+67T2 |
| 71 | 1−11.1T+71T2 |
| 73 | 1−14.8T+73T2 |
| 79 | 1+8.80T+79T2 |
| 83 | 1−10.8T+83T2 |
| 89 | 1−1.43T+89T2 |
| 97 | 1+3.43T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.592031143377707751291020430237, −7.53123188168722198939407970556, −6.89818681012205918023028989733, −6.28203039892872926885278307966, −5.37480572561691179871554656684, −4.74352431333538609399444049399, −3.59691775495615444920228810348, −2.88340205073481354091870599228, −2.01154362202121127135375199172, −1.03569791237203781219273122564,
1.03569791237203781219273122564, 2.01154362202121127135375199172, 2.88340205073481354091870599228, 3.59691775495615444920228810348, 4.74352431333538609399444049399, 5.37480572561691179871554656684, 6.28203039892872926885278307966, 6.89818681012205918023028989733, 7.53123188168722198939407970556, 8.592031143377707751291020430237