Properties

Label 2-4368-1.1-c1-0-45
Degree $2$
Conductor $4368$
Sign $-1$
Analytic cond. $34.8786$
Root an. cond. $5.90581$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 7-s + 9-s − 13-s + 2·15-s − 4·17-s + 8·19-s − 21-s − 6·23-s − 25-s − 27-s + 2·29-s + 8·31-s − 2·35-s − 2·37-s + 39-s − 2·41-s + 4·43-s − 2·45-s − 2·47-s + 49-s + 4·51-s − 6·53-s − 8·57-s + 6·59-s − 2·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 0.377·7-s + 1/3·9-s − 0.277·13-s + 0.516·15-s − 0.970·17-s + 1.83·19-s − 0.218·21-s − 1.25·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.43·31-s − 0.338·35-s − 0.328·37-s + 0.160·39-s − 0.312·41-s + 0.609·43-s − 0.298·45-s − 0.291·47-s + 1/7·49-s + 0.560·51-s − 0.824·53-s − 1.05·57-s + 0.781·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4368\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(34.8786\)
Root analytic conductor: \(5.90581\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4368,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.936543601978263475831382319040, −7.34107616517426769606325482661, −6.59150755013839775303486722074, −5.76832013105942246038988781129, −4.93892093290200253084127665689, −4.32290886022282521215654462379, −3.51779498018495891444818356989, −2.44479448891019510347240980858, −1.20600151254866230461336296054, 0, 1.20600151254866230461336296054, 2.44479448891019510347240980858, 3.51779498018495891444818356989, 4.32290886022282521215654462379, 4.93892093290200253084127665689, 5.76832013105942246038988781129, 6.59150755013839775303486722074, 7.34107616517426769606325482661, 7.936543601978263475831382319040

Graph of the $Z$-function along the critical line