L(s) = 1 | + 3-s + 4.16·5-s + 7-s + 9-s + 4.71·11-s + 13-s + 4.16·15-s − 0.450·17-s + 0.103·19-s + 21-s − 4.42·23-s + 12.3·25-s + 27-s + 1.89·29-s − 2.55·31-s + 4.71·33-s + 4.16·35-s − 0.450·37-s + 39-s + 4.26·41-s − 4.42·43-s + 4.16·45-s − 8.61·47-s + 49-s − 0.450·51-s + 12.6·53-s + 19.6·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.86·5-s + 0.377·7-s + 0.333·9-s + 1.42·11-s + 0.277·13-s + 1.07·15-s − 0.109·17-s + 0.0236·19-s + 0.218·21-s − 0.923·23-s + 2.46·25-s + 0.192·27-s + 0.352·29-s − 0.458·31-s + 0.821·33-s + 0.703·35-s − 0.0740·37-s + 0.160·39-s + 0.666·41-s − 0.675·43-s + 0.620·45-s − 1.25·47-s + 0.142·49-s − 0.0630·51-s + 1.74·53-s + 2.64·55-s + ⋯ |
Λ(s)=(=(4368s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4368s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.159393951 |
L(21) |
≈ |
4.159393951 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1−T |
| 13 | 1−T |
good | 5 | 1−4.16T+5T2 |
| 11 | 1−4.71T+11T2 |
| 17 | 1+0.450T+17T2 |
| 19 | 1−0.103T+19T2 |
| 23 | 1+4.42T+23T2 |
| 29 | 1−1.89T+29T2 |
| 31 | 1+2.55T+31T2 |
| 37 | 1+0.450T+37T2 |
| 41 | 1−4.26T+41T2 |
| 43 | 1+4.42T+43T2 |
| 47 | 1+8.61T+47T2 |
| 53 | 1−12.6T+53T2 |
| 59 | 1+7.16T+59T2 |
| 61 | 1+14.2T+61T2 |
| 67 | 1+12.8T+67T2 |
| 71 | 1−7.16T+71T2 |
| 73 | 1−1.57T+73T2 |
| 79 | 1−2.34T+79T2 |
| 83 | 1−8.93T+83T2 |
| 89 | 1−6.61T+89T2 |
| 97 | 1+4.67T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.593790312985305814131505869791, −7.69203486300594974136712553247, −6.66843124384951480408832773143, −6.28382666553917981170316535815, −5.52171666837116827739117514921, −4.64475999839476868617412729710, −3.76225351956494245566245814105, −2.74071002283353410936321475172, −1.83344821327538226651826415780, −1.31628656141869859854913556079,
1.31628656141869859854913556079, 1.83344821327538226651826415780, 2.74071002283353410936321475172, 3.76225351956494245566245814105, 4.64475999839476868617412729710, 5.52171666837116827739117514921, 6.28382666553917981170316535815, 6.66843124384951480408832773143, 7.69203486300594974136712553247, 8.593790312985305814131505869791