Properties

Label 2-4368-1.1-c1-0-49
Degree $2$
Conductor $4368$
Sign $1$
Analytic cond. $34.8786$
Root an. cond. $5.90581$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4.16·5-s + 7-s + 9-s + 4.71·11-s + 13-s + 4.16·15-s − 0.450·17-s + 0.103·19-s + 21-s − 4.42·23-s + 12.3·25-s + 27-s + 1.89·29-s − 2.55·31-s + 4.71·33-s + 4.16·35-s − 0.450·37-s + 39-s + 4.26·41-s − 4.42·43-s + 4.16·45-s − 8.61·47-s + 49-s − 0.450·51-s + 12.6·53-s + 19.6·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.86·5-s + 0.377·7-s + 0.333·9-s + 1.42·11-s + 0.277·13-s + 1.07·15-s − 0.109·17-s + 0.0236·19-s + 0.218·21-s − 0.923·23-s + 2.46·25-s + 0.192·27-s + 0.352·29-s − 0.458·31-s + 0.821·33-s + 0.703·35-s − 0.0740·37-s + 0.160·39-s + 0.666·41-s − 0.675·43-s + 0.620·45-s − 1.25·47-s + 0.142·49-s − 0.0630·51-s + 1.74·53-s + 2.64·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4368\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(34.8786\)
Root analytic conductor: \(5.90581\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4368,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.159393951\)
\(L(\frac12)\) \(\approx\) \(4.159393951\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 4.16T + 5T^{2} \)
11 \( 1 - 4.71T + 11T^{2} \)
17 \( 1 + 0.450T + 17T^{2} \)
19 \( 1 - 0.103T + 19T^{2} \)
23 \( 1 + 4.42T + 23T^{2} \)
29 \( 1 - 1.89T + 29T^{2} \)
31 \( 1 + 2.55T + 31T^{2} \)
37 \( 1 + 0.450T + 37T^{2} \)
41 \( 1 - 4.26T + 41T^{2} \)
43 \( 1 + 4.42T + 43T^{2} \)
47 \( 1 + 8.61T + 47T^{2} \)
53 \( 1 - 12.6T + 53T^{2} \)
59 \( 1 + 7.16T + 59T^{2} \)
61 \( 1 + 14.2T + 61T^{2} \)
67 \( 1 + 12.8T + 67T^{2} \)
71 \( 1 - 7.16T + 71T^{2} \)
73 \( 1 - 1.57T + 73T^{2} \)
79 \( 1 - 2.34T + 79T^{2} \)
83 \( 1 - 8.93T + 83T^{2} \)
89 \( 1 - 6.61T + 89T^{2} \)
97 \( 1 + 4.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.593790312985305814131505869791, −7.69203486300594974136712553247, −6.66843124384951480408832773143, −6.28382666553917981170316535815, −5.52171666837116827739117514921, −4.64475999839476868617412729710, −3.76225351956494245566245814105, −2.74071002283353410936321475172, −1.83344821327538226651826415780, −1.31628656141869859854913556079, 1.31628656141869859854913556079, 1.83344821327538226651826415780, 2.74071002283353410936321475172, 3.76225351956494245566245814105, 4.64475999839476868617412729710, 5.52171666837116827739117514921, 6.28382666553917981170316535815, 6.66843124384951480408832773143, 7.69203486300594974136712553247, 8.593790312985305814131505869791

Graph of the $Z$-function along the critical line