Properties

Label 2-4400-1.1-c1-0-49
Degree $2$
Conductor $4400$
Sign $1$
Analytic cond. $35.1341$
Root an. cond. $5.92740$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·7-s + 9-s − 11-s + 6·13-s − 2·17-s − 4·19-s + 8·21-s + 6·23-s − 4·27-s − 2·29-s − 8·31-s − 2·33-s + 8·37-s + 12·39-s + 6·41-s + 12·43-s + 10·47-s + 9·49-s − 4·51-s − 8·57-s + 4·59-s − 10·61-s + 4·63-s + 2·67-s + 12·69-s + 8·71-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.51·7-s + 1/3·9-s − 0.301·11-s + 1.66·13-s − 0.485·17-s − 0.917·19-s + 1.74·21-s + 1.25·23-s − 0.769·27-s − 0.371·29-s − 1.43·31-s − 0.348·33-s + 1.31·37-s + 1.92·39-s + 0.937·41-s + 1.82·43-s + 1.45·47-s + 9/7·49-s − 0.560·51-s − 1.05·57-s + 0.520·59-s − 1.28·61-s + 0.503·63-s + 0.244·67-s + 1.44·69-s + 0.949·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4400\)    =    \(2^{4} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(35.1341\)
Root analytic conductor: \(5.92740\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.743964678\)
\(L(\frac12)\) \(\approx\) \(3.743964678\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.428952625359810959381045717968, −7.78810547280425081611087515818, −7.23882664967131620094169749537, −6.06722921790833825540180903158, −5.44255287090529663970265958380, −4.33283846251475049114934623641, −3.90273373929304638709386348539, −2.77795406152189934158119772328, −2.05680716214755609125321225100, −1.11717290376769012198383328813, 1.11717290376769012198383328813, 2.05680716214755609125321225100, 2.77795406152189934158119772328, 3.90273373929304638709386348539, 4.33283846251475049114934623641, 5.44255287090529663970265958380, 6.06722921790833825540180903158, 7.23882664967131620094169749537, 7.78810547280425081611087515818, 8.428952625359810959381045717968

Graph of the $Z$-function along the critical line