L(s) = 1 | − 2·3-s − 4·7-s + 9-s − 11-s − 6·13-s + 2·17-s − 4·19-s + 8·21-s − 6·23-s + 4·27-s − 2·29-s − 8·31-s + 2·33-s − 8·37-s + 12·39-s + 6·41-s − 12·43-s − 10·47-s + 9·49-s − 4·51-s + 8·57-s + 4·59-s − 10·61-s − 4·63-s − 2·67-s + 12·69-s + 8·71-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.51·7-s + 1/3·9-s − 0.301·11-s − 1.66·13-s + 0.485·17-s − 0.917·19-s + 1.74·21-s − 1.25·23-s + 0.769·27-s − 0.371·29-s − 1.43·31-s + 0.348·33-s − 1.31·37-s + 1.92·39-s + 0.937·41-s − 1.82·43-s − 1.45·47-s + 9/7·49-s − 0.560·51-s + 1.05·57-s + 0.520·59-s − 1.28·61-s − 0.503·63-s − 0.244·67-s + 1.44·69-s + 0.949·71-s + ⋯ |
Λ(s)=(=(4400s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4400s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1+T |
good | 3 | 1+2T+pT2 |
| 7 | 1+4T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+12T+pT2 |
| 47 | 1+10T+pT2 |
| 53 | 1+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1+4T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.39670640039587408191046820043, −6.76524121744274112910508903739, −6.17312501935864596969907723956, −5.47088967195342583565929028119, −4.85974732655216967430322002334, −3.80606683850703192972973716479, −2.96142857643921751826612429350, −1.93482862156308380196244786119, 0, 0,
1.93482862156308380196244786119, 2.96142857643921751826612429350, 3.80606683850703192972973716479, 4.85974732655216967430322002334, 5.47088967195342583565929028119, 6.17312501935864596969907723956, 6.76524121744274112910508903739, 7.39670640039587408191046820043