L(s) = 1 | − 1.43·2-s − 3.36·3-s + 0.0571·4-s + 1.55·5-s + 4.82·6-s − 3.66·7-s + 2.78·8-s + 8.30·9-s − 2.23·10-s − 0.192·12-s + 3.10·13-s + 5.26·14-s − 5.23·15-s − 4.11·16-s + 4.34·17-s − 11.9·18-s − 2.65·19-s + 0.0889·20-s + 12.3·21-s + 2.08·23-s − 9.36·24-s − 2.57·25-s − 4.45·26-s − 17.8·27-s − 0.209·28-s − 4.07·29-s + 7.50·30-s + ⋯ |
L(s) = 1 | − 1.01·2-s − 1.94·3-s + 0.0285·4-s + 0.696·5-s + 1.96·6-s − 1.38·7-s + 0.985·8-s + 2.76·9-s − 0.706·10-s − 0.0554·12-s + 0.862·13-s + 1.40·14-s − 1.35·15-s − 1.02·16-s + 1.05·17-s − 2.80·18-s − 0.609·19-s + 0.0198·20-s + 2.69·21-s + 0.435·23-s − 1.91·24-s − 0.515·25-s − 0.874·26-s − 3.42·27-s − 0.0396·28-s − 0.757·29-s + 1.37·30-s + ⋯ |
Λ(s)=(=(4477s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4477s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 37 | 1−T |
good | 2 | 1+1.43T+2T2 |
| 3 | 1+3.36T+3T2 |
| 5 | 1−1.55T+5T2 |
| 7 | 1+3.66T+7T2 |
| 13 | 1−3.10T+13T2 |
| 17 | 1−4.34T+17T2 |
| 19 | 1+2.65T+19T2 |
| 23 | 1−2.08T+23T2 |
| 29 | 1+4.07T+29T2 |
| 31 | 1+3.76T+31T2 |
| 41 | 1−6.47T+41T2 |
| 43 | 1−3.77T+43T2 |
| 47 | 1+8.91T+47T2 |
| 53 | 1+2.24T+53T2 |
| 59 | 1−11.8T+59T2 |
| 61 | 1+13.9T+61T2 |
| 67 | 1+15.3T+67T2 |
| 71 | 1−8.76T+71T2 |
| 73 | 1−7.43T+73T2 |
| 79 | 1+13.3T+79T2 |
| 83 | 1−9.93T+83T2 |
| 89 | 1−17.7T+89T2 |
| 97 | 1+8.23T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83840739160965623336180246972, −7.16747812310974745583844927519, −6.38278628765974092906584916359, −5.95320453737608094619930471728, −5.32917920830693388854319858008, −4.35338466229133012835257547339, −3.51569998108764043105324516735, −1.82954525331226377733107257264, −0.934118076663053757161614087735, 0,
0.934118076663053757161614087735, 1.82954525331226377733107257264, 3.51569998108764043105324516735, 4.35338466229133012835257547339, 5.32917920830693388854319858008, 5.95320453737608094619930471728, 6.38278628765974092906584916359, 7.16747812310974745583844927519, 7.83840739160965623336180246972