Properties

Label 2-448-1.1-c3-0-11
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $26.4328$
Root an. cond. $5.14128$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 16·5-s + 7·7-s − 23·9-s + 24·11-s + 68·13-s − 32·15-s + 54·17-s − 46·19-s − 14·21-s − 176·23-s + 131·25-s + 100·27-s + 174·29-s + 116·31-s − 48·33-s + 112·35-s − 74·37-s − 136·39-s − 10·41-s − 480·43-s − 368·45-s + 572·47-s + 49·49-s − 108·51-s + 162·53-s + 384·55-s + ⋯
L(s)  = 1  − 0.384·3-s + 1.43·5-s + 0.377·7-s − 0.851·9-s + 0.657·11-s + 1.45·13-s − 0.550·15-s + 0.770·17-s − 0.555·19-s − 0.145·21-s − 1.59·23-s + 1.04·25-s + 0.712·27-s + 1.11·29-s + 0.672·31-s − 0.253·33-s + 0.540·35-s − 0.328·37-s − 0.558·39-s − 0.0380·41-s − 1.70·43-s − 1.21·45-s + 1.77·47-s + 1/7·49-s − 0.296·51-s + 0.419·53-s + 0.941·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(26.4328\)
Root analytic conductor: \(5.14128\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.404194952\)
\(L(\frac12)\) \(\approx\) \(2.404194952\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - p T \)
good3 \( 1 + 2 T + p^{3} T^{2} \)
5 \( 1 - 16 T + p^{3} T^{2} \)
11 \( 1 - 24 T + p^{3} T^{2} \)
13 \( 1 - 68 T + p^{3} T^{2} \)
17 \( 1 - 54 T + p^{3} T^{2} \)
19 \( 1 + 46 T + p^{3} T^{2} \)
23 \( 1 + 176 T + p^{3} T^{2} \)
29 \( 1 - 6 p T + p^{3} T^{2} \)
31 \( 1 - 116 T + p^{3} T^{2} \)
37 \( 1 + 2 p T + p^{3} T^{2} \)
41 \( 1 + 10 T + p^{3} T^{2} \)
43 \( 1 + 480 T + p^{3} T^{2} \)
47 \( 1 - 572 T + p^{3} T^{2} \)
53 \( 1 - 162 T + p^{3} T^{2} \)
59 \( 1 + 86 T + p^{3} T^{2} \)
61 \( 1 - 904 T + p^{3} T^{2} \)
67 \( 1 - 660 T + p^{3} T^{2} \)
71 \( 1 + 1024 T + p^{3} T^{2} \)
73 \( 1 - 770 T + p^{3} T^{2} \)
79 \( 1 - 904 T + p^{3} T^{2} \)
83 \( 1 - 682 T + p^{3} T^{2} \)
89 \( 1 + 102 T + p^{3} T^{2} \)
97 \( 1 + 218 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.56480593280988231971019898375, −9.945878943104851608220139975777, −8.813979355129286989845266630100, −8.216718257510508179639488871985, −6.49918233833926407681722809876, −6.05012059571621196865816067982, −5.20110970311538089375129196469, −3.75046211898536870871056101514, −2.26641089135339627238958984135, −1.08599772617165914430570884843, 1.08599772617165914430570884843, 2.26641089135339627238958984135, 3.75046211898536870871056101514, 5.20110970311538089375129196469, 6.05012059571621196865816067982, 6.49918233833926407681722809876, 8.216718257510508179639488871985, 8.813979355129286989845266630100, 9.945878943104851608220139975777, 10.56480593280988231971019898375

Graph of the $Z$-function along the critical line