L(s) = 1 | + 4.64·3-s + 18.3·5-s − 7·7-s − 5.38·9-s + 39.5·11-s − 64.5·13-s + 85.2·15-s + 109.·17-s + 137.·19-s − 32.5·21-s − 45.2·23-s + 211.·25-s − 150.·27-s + 41.1·29-s + 262.·31-s + 184·33-s − 128.·35-s − 125.·37-s − 299.·39-s − 299.·41-s + 36.9·43-s − 98.7·45-s + 122.·47-s + 49·49-s + 507.·51-s + 20.4·53-s + 725.·55-s + ⋯ |
L(s) = 1 | + 0.894·3-s + 1.63·5-s − 0.377·7-s − 0.199·9-s + 1.08·11-s − 1.37·13-s + 1.46·15-s + 1.55·17-s + 1.65·19-s − 0.338·21-s − 0.410·23-s + 1.68·25-s − 1.07·27-s + 0.263·29-s + 1.52·31-s + 0.970·33-s − 0.619·35-s − 0.558·37-s − 1.23·39-s − 1.14·41-s + 0.130·43-s − 0.327·45-s + 0.381·47-s + 0.142·49-s + 1.39·51-s + 0.0530·53-s + 1.77·55-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(448s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.534395964 |
L(21) |
≈ |
3.534395964 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+7T |
good | 3 | 1−4.64T+27T2 |
| 5 | 1−18.3T+125T2 |
| 11 | 1−39.5T+1.33e3T2 |
| 13 | 1+64.5T+2.19e3T2 |
| 17 | 1−109.T+4.91e3T2 |
| 19 | 1−137.T+6.85e3T2 |
| 23 | 1+45.2T+1.21e4T2 |
| 29 | 1−41.1T+2.43e4T2 |
| 31 | 1−262.T+2.97e4T2 |
| 37 | 1+125.T+5.06e4T2 |
| 41 | 1+299.T+6.89e4T2 |
| 43 | 1−36.9T+7.95e4T2 |
| 47 | 1−122.T+1.03e5T2 |
| 53 | 1−20.4T+1.48e5T2 |
| 59 | 1+60.8T+2.05e5T2 |
| 61 | 1+791.T+2.26e5T2 |
| 67 | 1−1.04e3T+3.00e5T2 |
| 71 | 1+407.T+3.57e5T2 |
| 73 | 1−562.T+3.89e5T2 |
| 79 | 1−601.T+4.93e5T2 |
| 83 | 1+652.T+5.71e5T2 |
| 89 | 1+898.T+7.04e5T2 |
| 97 | 1+621.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12403866012600281130442891663, −9.728917805532807568966406538560, −9.180652938648264341081899114033, −8.025819700228228576250898279123, −6.96728386966855304842691162848, −5.91901564828315865149073237603, −5.09299878756849307513215298212, −3.37461920163295047860819015647, −2.53506010118222026204505841790, −1.29925975829022415025363740226,
1.29925975829022415025363740226, 2.53506010118222026204505841790, 3.37461920163295047860819015647, 5.09299878756849307513215298212, 5.91901564828315865149073237603, 6.96728386966855304842691162848, 8.025819700228228576250898279123, 9.180652938648264341081899114033, 9.728917805532807568966406538560, 10.12403866012600281130442891663