Properties

Label 2-448-1.1-c5-0-29
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 96·5-s + 49·7-s − 239·9-s + 720·11-s − 572·13-s + 192·15-s + 1.25e3·17-s + 94·19-s + 98·21-s + 96·23-s + 6.09e3·25-s − 964·27-s + 4.37e3·29-s − 6.24e3·31-s + 1.44e3·33-s + 4.70e3·35-s + 1.07e4·37-s − 1.14e3·39-s + 1.20e4·41-s + 9.16e3·43-s − 2.29e4·45-s − 2.58e4·47-s + 2.40e3·49-s + 2.50e3·51-s − 1.01e3·53-s + 6.91e4·55-s + ⋯
L(s)  = 1  + 0.128·3-s + 1.71·5-s + 0.377·7-s − 0.983·9-s + 1.79·11-s − 0.938·13-s + 0.220·15-s + 1.05·17-s + 0.0597·19-s + 0.0484·21-s + 0.0378·23-s + 1.94·25-s − 0.254·27-s + 0.965·29-s − 1.16·31-s + 0.230·33-s + 0.649·35-s + 1.29·37-s − 0.120·39-s + 1.11·41-s + 0.755·43-s − 1.68·45-s − 1.70·47-s + 1/7·49-s + 0.135·51-s − 0.0495·53-s + 3.08·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.604344163\)
\(L(\frac12)\) \(\approx\) \(3.604344163\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - p^{2} T \)
good3 \( 1 - 2 T + p^{5} T^{2} \)
5 \( 1 - 96 T + p^{5} T^{2} \)
11 \( 1 - 720 T + p^{5} T^{2} \)
13 \( 1 + 44 p T + p^{5} T^{2} \)
17 \( 1 - 1254 T + p^{5} T^{2} \)
19 \( 1 - 94 T + p^{5} T^{2} \)
23 \( 1 - 96 T + p^{5} T^{2} \)
29 \( 1 - 4374 T + p^{5} T^{2} \)
31 \( 1 + 6244 T + p^{5} T^{2} \)
37 \( 1 - 10798 T + p^{5} T^{2} \)
41 \( 1 - 12006 T + p^{5} T^{2} \)
43 \( 1 - 9160 T + p^{5} T^{2} \)
47 \( 1 + 25836 T + p^{5} T^{2} \)
53 \( 1 + 1014 T + p^{5} T^{2} \)
59 \( 1 + 1242 T + p^{5} T^{2} \)
61 \( 1 + 7592 T + p^{5} T^{2} \)
67 \( 1 + 41132 T + p^{5} T^{2} \)
71 \( 1 + 37632 T + p^{5} T^{2} \)
73 \( 1 + 13438 T + p^{5} T^{2} \)
79 \( 1 - 6248 T + p^{5} T^{2} \)
83 \( 1 - 25254 T + p^{5} T^{2} \)
89 \( 1 + 45126 T + p^{5} T^{2} \)
97 \( 1 - 107222 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05069876965832562943581152896, −9.403014582641006545169654619137, −8.792543795973682342314229813791, −7.49491500465372427353718688073, −6.29393215778616401877033476394, −5.75190589319767868998713224294, −4.66260390706071764405195568343, −3.13011828055702580967506274545, −2.04591291621398054278624469522, −1.04664351522192062629010364183, 1.04664351522192062629010364183, 2.04591291621398054278624469522, 3.13011828055702580967506274545, 4.66260390706071764405195568343, 5.75190589319767868998713224294, 6.29393215778616401877033476394, 7.49491500465372427353718688073, 8.792543795973682342314229813791, 9.403014582641006545169654619137, 10.05069876965832562943581152896

Graph of the $Z$-function along the critical line