L(s) = 1 | + (0.0543 − 0.0145i)3-s + (1.25 + 0.337i)5-s + (−0.230 + 2.63i)7-s + (−2.59 + 1.49i)9-s + (0.402 + 1.50i)11-s + (1.59 + 1.59i)13-s + 0.0733·15-s + (1.46 − 2.54i)17-s + (−2.05 + 7.65i)19-s + (0.0258 + 0.146i)21-s + (3.91 − 2.26i)23-s + (−2.86 − 1.65i)25-s + (−0.238 + 0.238i)27-s + (2.06 + 2.06i)29-s + (3.14 − 5.43i)31-s + ⋯ |
L(s) = 1 | + (0.0313 − 0.00841i)3-s + (0.562 + 0.150i)5-s + (−0.0872 + 0.996i)7-s + (−0.865 + 0.499i)9-s + (0.121 + 0.453i)11-s + (0.442 + 0.442i)13-s + 0.0189·15-s + (0.356 − 0.617i)17-s + (−0.470 + 1.75i)19-s + (0.00564 + 0.0320i)21-s + (0.816 − 0.471i)23-s + (−0.572 − 0.330i)25-s + (−0.0459 + 0.0459i)27-s + (0.382 + 0.382i)29-s + (0.564 − 0.976i)31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(0.378−0.925i)Λ(2−s)
Λ(s)=(=(448s/2ΓC(s+1/2)L(s)(0.378−0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.378−0.925i
|
Analytic conductor: |
3.57729 |
Root analytic conductor: |
1.89137 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :1/2), 0.378−0.925i)
|
Particular Values
L(1) |
≈ |
1.16017+0.779098i |
L(21) |
≈ |
1.16017+0.779098i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.230−2.63i)T |
good | 3 | 1+(−0.0543+0.0145i)T+(2.59−1.5i)T2 |
| 5 | 1+(−1.25−0.337i)T+(4.33+2.5i)T2 |
| 11 | 1+(−0.402−1.50i)T+(−9.52+5.5i)T2 |
| 13 | 1+(−1.59−1.59i)T+13iT2 |
| 17 | 1+(−1.46+2.54i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.05−7.65i)T+(−16.4−9.5i)T2 |
| 23 | 1+(−3.91+2.26i)T+(11.5−19.9i)T2 |
| 29 | 1+(−2.06−2.06i)T+29iT2 |
| 31 | 1+(−3.14+5.43i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−5.24−1.40i)T+(32.0+18.5i)T2 |
| 41 | 1−7.34iT−41T2 |
| 43 | 1+(−1.99+1.99i)T−43iT2 |
| 47 | 1+(0.979+1.69i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−3.00−11.2i)T+(−45.8+26.5i)T2 |
| 59 | 1+(0.793+2.96i)T+(−51.0+29.5i)T2 |
| 61 | 1+(−2.60+9.72i)T+(−52.8−30.5i)T2 |
| 67 | 1+(−2.11+0.566i)T+(58.0−33.5i)T2 |
| 71 | 1+7.26iT−71T2 |
| 73 | 1+(12.2+7.06i)T+(36.5+63.2i)T2 |
| 79 | 1+(−0.961−1.66i)T+(−39.5+68.4i)T2 |
| 83 | 1+(8.82+8.82i)T+83iT2 |
| 89 | 1+(−11.5+6.66i)T+(44.5−77.0i)T2 |
| 97 | 1+9.69T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36920791921252272048517372897, −10.27933399437833315029988367827, −9.474041421761467883509920649436, −8.587201586206714419174128634445, −7.76804369886177934922162283384, −6.29199778795832142127258683378, −5.79179799498479529277664662727, −4.59682031197621602757501035244, −3.00840835912049952212169895857, −1.95274094742625830783970342797,
0.913751241003020627602320336292, 2.82607986582602909136330068322, 3.93724665807768352546479478549, 5.28414841606152329692172155747, 6.22695213749752950253732475765, 7.13294545872250519752169975139, 8.362340256723341320359231513310, 9.075371335996337752682405324205, 10.07129549790269213602797091472, 10.95279145871707395063051929754