L(s) = 1 | + (0.388 − 1.44i)3-s + (2.81 − 0.755i)5-s + (1.47 − 2.19i)7-s + (0.649 + 0.375i)9-s + (−0.0165 + 0.0619i)11-s + (−3.62 + 3.62i)13-s − 4.37i·15-s + (3.26 − 1.88i)17-s + (−2.13 + 0.572i)19-s + (−2.60 − 2.99i)21-s + (−3.80 + 6.59i)23-s + (3.04 − 1.75i)25-s + (3.97 − 3.97i)27-s + (−4.74 − 4.74i)29-s + (0.329 + 0.570i)31-s + ⋯ |
L(s) = 1 | + (0.224 − 0.836i)3-s + (1.26 − 0.337i)5-s + (0.558 − 0.829i)7-s + (0.216 + 0.125i)9-s + (−0.00500 + 0.0186i)11-s + (−1.00 + 1.00i)13-s − 1.12i·15-s + (0.790 − 0.456i)17-s + (−0.490 + 0.131i)19-s + (−0.568 − 0.653i)21-s + (−0.793 + 1.37i)23-s + (0.608 − 0.351i)25-s + (0.765 − 0.765i)27-s + (−0.880 − 0.880i)29-s + (0.0591 + 0.102i)31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(0.486+0.873i)Λ(2−s)
Λ(s)=(=(448s/2ΓC(s+1/2)L(s)(0.486+0.873i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.486+0.873i
|
Analytic conductor: |
3.57729 |
Root analytic conductor: |
1.89137 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :1/2), 0.486+0.873i)
|
Particular Values
L(1) |
≈ |
1.64561−0.966665i |
L(21) |
≈ |
1.64561−0.966665i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−1.47+2.19i)T |
good | 3 | 1+(−0.388+1.44i)T+(−2.59−1.5i)T2 |
| 5 | 1+(−2.81+0.755i)T+(4.33−2.5i)T2 |
| 11 | 1+(0.0165−0.0619i)T+(−9.52−5.5i)T2 |
| 13 | 1+(3.62−3.62i)T−13iT2 |
| 17 | 1+(−3.26+1.88i)T+(8.5−14.7i)T2 |
| 19 | 1+(2.13−0.572i)T+(16.4−9.5i)T2 |
| 23 | 1+(3.80−6.59i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.74+4.74i)T+29iT2 |
| 31 | 1+(−0.329−0.570i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1.08+4.05i)T+(−32.0+18.5i)T2 |
| 41 | 1−7.67T+41T2 |
| 43 | 1+(−2.54−2.54i)T+43iT2 |
| 47 | 1+(2.62−4.55i)T+(−23.5−40.7i)T2 |
| 53 | 1+(10.1+2.72i)T+(45.8+26.5i)T2 |
| 59 | 1+(2.43+0.652i)T+(51.0+29.5i)T2 |
| 61 | 1+(−1.84−6.89i)T+(−52.8+30.5i)T2 |
| 67 | 1+(5.98+1.60i)T+(58.0+33.5i)T2 |
| 71 | 1+1.08T+71T2 |
| 73 | 1+(0.0232+0.0402i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−15.2−8.80i)T+(39.5+68.4i)T2 |
| 83 | 1+(−5.07−5.07i)T+83iT2 |
| 89 | 1+(4.47−7.75i)T+(−44.5−77.0i)T2 |
| 97 | 1−1.85iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.93014058891306765955281170460, −9.771342767736886694462249588162, −9.439323765524127767706072751714, −7.892513713141166187534609324218, −7.41083414936236200860084003534, −6.34297823591747456479816631458, −5.27101841929411522604290219142, −4.17344803731536265950517785781, −2.24396323938358720260189603562, −1.44116291603233712676664213710,
1.99250972292863291790586725309, 3.09103936536382977275518791764, 4.60951470310681683213160848518, 5.49519210783107814727457563999, 6.33797129393659660750219714636, 7.71753960744078133504541915878, 8.763739798634114832109178205054, 9.624357804587167066909121597964, 10.22781402827050933289413307723, 10.87292901868003626916821075153