L(s) = 1 | + (0.825 − 3.08i)3-s + (1.86 − 0.501i)5-s + (−2.17 + 1.49i)7-s + (−6.21 − 3.58i)9-s + (0.944 − 3.52i)11-s + (0.372 − 0.372i)13-s − 6.17i·15-s + (2.39 − 1.38i)17-s + (−1.60 + 0.431i)19-s + (2.82 + 7.95i)21-s + (1.27 − 2.20i)23-s + (−1.08 + 0.626i)25-s + (−9.41 + 9.41i)27-s + (2.14 + 2.14i)29-s + (2.74 + 4.75i)31-s + ⋯ |
L(s) = 1 | + (0.476 − 1.77i)3-s + (0.836 − 0.224i)5-s + (−0.823 + 0.566i)7-s + (−2.07 − 1.19i)9-s + (0.284 − 1.06i)11-s + (0.103 − 0.103i)13-s − 1.59i·15-s + (0.582 − 0.336i)17-s + (−0.369 + 0.0989i)19-s + (0.615 + 1.73i)21-s + (0.265 − 0.459i)23-s + (−0.216 + 0.125i)25-s + (−1.81 + 1.81i)27-s + (0.397 + 0.397i)29-s + (0.493 + 0.854i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.569 + 0.821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.569 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.749608 - 1.43140i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.749608 - 1.43140i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (2.17 - 1.49i)T \) |
good | 3 | \( 1 + (-0.825 + 3.08i)T + (-2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (-1.86 + 0.501i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (-0.944 + 3.52i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-0.372 + 0.372i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.39 + 1.38i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.60 - 0.431i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.27 + 2.20i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.14 - 2.14i)T + 29iT^{2} \) |
| 31 | \( 1 + (-2.74 - 4.75i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.21 + 4.53i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 3.95T + 41T^{2} \) |
| 43 | \( 1 + (-4.29 - 4.29i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.85 - 3.21i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.49 - 1.74i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (8.21 + 2.20i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.101 - 0.378i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-13.8 - 3.72i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 8.98T + 71T^{2} \) |
| 73 | \( 1 + (-0.766 - 1.32i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.47 + 2.00i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.67 - 3.67i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.35 + 5.80i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 4.52iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94806187644290074630371056740, −9.568535039546818403242078005634, −8.832141828479618833179332278346, −8.109070403016293250485054829846, −6.93995218844565540074400126468, −6.19596576522618340101671595234, −5.57308652822555918215716871773, −3.27925773316531355267714158729, −2.37208234623799393794837371889, −1.00309516965368094421155969602,
2.42853122062574701588846221972, 3.64297194469878309189037133644, 4.42701267047640422797176173840, 5.56868580727584080192673432194, 6.60661807806550390834578723292, 7.962748295670356628139893769386, 9.174118892927537380343956129656, 9.779213624448120447901704480633, 10.15526362033631780053828821098, 10.97236702384040227315610871419