L(s) = 1 | + (0.665 − 2.48i)3-s + (−3.12 + 0.837i)5-s + (−1.56 − 2.13i)7-s + (−3.13 − 1.80i)9-s + (−0.376 + 1.40i)11-s + (−3.11 + 3.11i)13-s + 8.31i·15-s + (2.02 − 1.16i)17-s + (−4.40 + 1.18i)19-s + (−6.34 + 2.45i)21-s + (1.15 − 1.99i)23-s + (4.72 − 2.73i)25-s + (−1.12 + 1.12i)27-s + (−1.55 − 1.55i)29-s + (−3.88 − 6.73i)31-s + ⋯ |
L(s) = 1 | + (0.384 − 1.43i)3-s + (−1.39 + 0.374i)5-s + (−0.590 − 0.807i)7-s + (−1.04 − 0.602i)9-s + (−0.113 + 0.423i)11-s + (−0.863 + 0.863i)13-s + 2.14i·15-s + (0.490 − 0.283i)17-s + (−1.01 + 0.270i)19-s + (−1.38 + 0.536i)21-s + (0.240 − 0.416i)23-s + (0.945 − 0.546i)25-s + (−0.216 + 0.216i)27-s + (−0.288 − 0.288i)29-s + (−0.698 − 1.20i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.927 - 0.373i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.927 - 0.373i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0803259 + 0.414527i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0803259 + 0.414527i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (1.56 + 2.13i)T \) |
good | 3 | \( 1 + (-0.665 + 2.48i)T + (-2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (3.12 - 0.837i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (0.376 - 1.40i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (3.11 - 3.11i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.02 + 1.16i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.40 - 1.18i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.15 + 1.99i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.55 + 1.55i)T + 29iT^{2} \) |
| 31 | \( 1 + (3.88 + 6.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.272 - 1.01i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 2.77T + 41T^{2} \) |
| 43 | \( 1 + (7.12 + 7.12i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.42 - 2.46i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-11.0 - 2.97i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (3.77 + 1.01i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (3.72 + 13.9i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (2.59 + 0.695i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 7.48T + 71T^{2} \) |
| 73 | \( 1 + (5.65 + 9.78i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.706 - 0.408i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.65 + 2.65i)T + 83iT^{2} \) |
| 89 | \( 1 + (2.40 - 4.17i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 5.86iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75974879451346039553347993320, −9.658449082759752137631413670654, −8.415609813707422741717543105714, −7.52432068399576980876082865641, −7.18786666929448425897281250116, −6.37811109805106989261475756159, −4.49609084119022581310311235328, −3.46835486507065191959339141094, −2.12308148251220743799365354808, −0.24006533451651154365243938985,
2.96715074306237975754203021045, 3.67797766220875716717560347850, 4.74459390888821365599454511838, 5.58347944070559178104227365306, 7.17639119538536659417825159577, 8.370262961468286556414405267204, 8.781835807267608284618117744447, 9.836259236225720693393966594179, 10.57013531816546940079818015741, 11.51563421222398275964935475877