L(s) = 1 | + (0.665 − 2.48i)3-s + (−3.12 + 0.837i)5-s + (−1.56 − 2.13i)7-s + (−3.13 − 1.80i)9-s + (−0.376 + 1.40i)11-s + (−3.11 + 3.11i)13-s + 8.31i·15-s + (2.02 − 1.16i)17-s + (−4.40 + 1.18i)19-s + (−6.34 + 2.45i)21-s + (1.15 − 1.99i)23-s + (4.72 − 2.73i)25-s + (−1.12 + 1.12i)27-s + (−1.55 − 1.55i)29-s + (−3.88 − 6.73i)31-s + ⋯ |
L(s) = 1 | + (0.384 − 1.43i)3-s + (−1.39 + 0.374i)5-s + (−0.590 − 0.807i)7-s + (−1.04 − 0.602i)9-s + (−0.113 + 0.423i)11-s + (−0.863 + 0.863i)13-s + 2.14i·15-s + (0.490 − 0.283i)17-s + (−1.01 + 0.270i)19-s + (−1.38 + 0.536i)21-s + (0.240 − 0.416i)23-s + (0.945 − 0.546i)25-s + (−0.216 + 0.216i)27-s + (−0.288 − 0.288i)29-s + (−0.698 − 1.20i)31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(−0.927−0.373i)Λ(2−s)
Λ(s)=(=(448s/2ΓC(s+1/2)L(s)(−0.927−0.373i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
−0.927−0.373i
|
Analytic conductor: |
3.57729 |
Root analytic conductor: |
1.89137 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :1/2), −0.927−0.373i)
|
Particular Values
L(1) |
≈ |
0.0803259+0.414527i |
L(21) |
≈ |
0.0803259+0.414527i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(1.56+2.13i)T |
good | 3 | 1+(−0.665+2.48i)T+(−2.59−1.5i)T2 |
| 5 | 1+(3.12−0.837i)T+(4.33−2.5i)T2 |
| 11 | 1+(0.376−1.40i)T+(−9.52−5.5i)T2 |
| 13 | 1+(3.11−3.11i)T−13iT2 |
| 17 | 1+(−2.02+1.16i)T+(8.5−14.7i)T2 |
| 19 | 1+(4.40−1.18i)T+(16.4−9.5i)T2 |
| 23 | 1+(−1.15+1.99i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.55+1.55i)T+29iT2 |
| 31 | 1+(3.88+6.73i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−0.272−1.01i)T+(−32.0+18.5i)T2 |
| 41 | 1+2.77T+41T2 |
| 43 | 1+(7.12+7.12i)T+43iT2 |
| 47 | 1+(1.42−2.46i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−11.0−2.97i)T+(45.8+26.5i)T2 |
| 59 | 1+(3.77+1.01i)T+(51.0+29.5i)T2 |
| 61 | 1+(3.72+13.9i)T+(−52.8+30.5i)T2 |
| 67 | 1+(2.59+0.695i)T+(58.0+33.5i)T2 |
| 71 | 1−7.48T+71T2 |
| 73 | 1+(5.65+9.78i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−0.706−0.408i)T+(39.5+68.4i)T2 |
| 83 | 1+(2.65+2.65i)T+83iT2 |
| 89 | 1+(2.40−4.17i)T+(−44.5−77.0i)T2 |
| 97 | 1−5.86iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75974879451346039553347993320, −9.658449082759752137631413670654, −8.415609813707422741717543105714, −7.52432068399576980876082865641, −7.18786666929448425897281250116, −6.37811109805106989261475756159, −4.49609084119022581310311235328, −3.46835486507065191959339141094, −2.12308148251220743799365354808, −0.24006533451651154365243938985,
2.96715074306237975754203021045, 3.67797766220875716717560347850, 4.74459390888821365599454511838, 5.58347944070559178104227365306, 7.17639119538536659417825159577, 8.370262961468286556414405267204, 8.781835807267608284618117744447, 9.836259236225720693393966594179, 10.57013531816546940079818015741, 11.51563421222398275964935475877